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PREFACE

This book is designed as a text for the first year of a two-year course in
General Physics, or for an intermediate course in Mechanics and Heat
following a briefer introduction to these subjects. In order that the book
can be used by a student who is concurrently taking his first course in
Calculus, the use of that subject is postponed until Chapter 4.

The book follows the same general plan as the author’s earlier text,
Mechanics, Heat, and Sound. More extended treatment has been given
to a number of topics, including angular momentum, elasticity, damped
and forced harmonic motion, and wave motion. Vector quantities are
consistently represented by bold-face type. The vector product is intro-
duced in Chapter 3 in connection with the moment of a force, and the
scalar product in Chapter 7 in connection with work.

Most of the problems are new. Answers are given immediately follow-
ing odd-numbered problems.

The author wishes to express his gratitude to all those students and
teachers whose criticisms and suggestions have helped to guide him in writ-
ing this book. He will appreciate having any errors called to his attention.

Francis W. SEars
April, 1958
Hanover, N. H.



FOREWORD TO THE THIRD PRINTING

It is hoped that as a result of the invitation extended in the last sentence
of the Preface, most of the author’s mistakes have been found and cor-
rected. Thanks are due in particular to E. H. Clark, L. M. Clendenning,
Ronald Flegel, John L. Gergen, David R. Goosman, Franklin A. Ruehl,
Jr., and Edwin F. Taylor. And the invitation still holds.

F. W. 8.
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CHAPTER 1
COMPOSITION AND RESOLUTION OF VECTORS

1-1 Units and standards. Physics has been called the science of meas-
urement. To quote from Lord Kelvin (1824-1907), “I often say that when
you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely, in your thoughts, advanced
to the stage of Science, whatever the matter may be.”

The process of measuring a physical quantity consists of finding the
ratio of its magnitude to that of some unit of the quantity. Thus when
we say that the length of a rod is 10 centimeters, we mean that its length
is 10 times ag great as the unit of length called the centimeter. As a result
of international collaboration over a long period, practically all of the units
used in physics are now the same throughout the world.

It would be possible to define an arbitrary unit of any quantity of
interest in physics. As we shall see later, however, units of three properly
chosen quantities are sufficient, at least in the field of mechanics. The
unit of any other quantity can then be expressed as some combination
of these three (in some cases, only two are required). The choice of the
three quantities is to some extent arbitrary, and in this book we shall con-
sider them to be length, mass, and time.

A material object which embodies a unit is called a standard. The inter-
national standard of length is a bar of platinum-iridium alloy of X-shaped
cross section (see Fig. 1-1) called the standard meter, which is kept at the
International Bureau of Weights and Measures at Sevres, near Paris.
The distance between two lines engraved on gold plugs near the ends of
the bar, when the bar is at the temperature of melting ice, is called one
meter, and one one-hundredth of this distance is one centimeter. Copies of
the Paris meter have been distributed to the standardizing agencies of
various nations, such as the National Bureau of Standards at Washington,
D. C. The meter was originally intended to represent one ten-millionth
of the earth’s quadrant through Paris, but later, more accurate measure-
ments have shown that it differs from its intended value by a small amount.
The standard meter has been carefully compared with the wavelength
of one particular color of light emitted by cadmium vapor in an electrical
discharge, and if it were ever destroyed it could be replaced with an
accuracy better than one part in a million.

The yard, originally embodied by a physical standard like the meter, is
now defined as

1



2 COMPOSITION AND RESOLUTION OF VECTORS [crAP. 1

F1c. 1-1. The standard meter and the standard kilogram.

3600
1 yard = 3037 meter (exactly),
so that the same physical standard serves for both the yard and the meter.
The foot is defined as one-third of a yard.

The international standard of mass* is a cylinder of platinum-iridium
(see Fig. 1-1) called the standard kilogram. It was originally intended to
have a mass equal to that of 1000 em? of pure water at 4°C but, as with the
standard meter, more precise measurements have shown that this is not
exactly true.

The pound mass, like the yard, was formerly embodied by a physical
standard of its own, but the standard avoirdupors pound is now defined in
the U. S. as a body of mass 0.4535924277 kgm.

The standard of time is our rotating earth, and the fundamental unit
of time is the mean solar day, the average time for the earth to make one
revolution on its axis with respect to the sun. The length of a solar day
increases and decreases gradually in the course of a year because of the
orbital motion of the earth. The length of a solar day averaged over a
year is the mean solar day.

* The concept of mass is discussed more fully in Chapter 5.
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The unit of time used in scientific work is the second, defined as 1/86,400
of a mean solar day. .

We shall adopt the convention that an algebraic symbol x"epresentmg
a physical quantity stands for both a numerical value and a unit. Thus the
symbol [ might represent a length of 10 ft, the symbol m a mass of 15 'kgm,
and the symbol ¢ a time of 20 sec. The numerical value and .the unit t9—
gether constitute the magnitude of the quantity. The numerical value is
the ratio of the magnitude of the quantity to that of the unit.

An algebraic symbol occurring in a physical equation can be replaced
by the magnitude it represents but not by the numerical value alone. For
example, the density p of a homogeneous body is defined as the quotient
of its mass m and its volume V:

p=m/V.

Then if m = 150 gm and V = 20.0 em?,

The numerical value of the density is 7.50 and the unit is 1 gm/cm3.

1-2 Force. Mechanics is the branch of physics which deals with the
motion of material bodies and with the forces that bring about the motion.
Since motion is best described by the methods of calculus and many readers
of this book are just beginning their study of this subject, we shall postpone
a discussion of motion until Chapter 4, and start with a study of forces.

When we push or pull on a body, we are said to exert a force on it.
Forces can also be exerted by inanimate objects; a stretched spring exerts
forces on the bodies to which its ends are attached, compressed air exerts
a force on the walls of its container, a locomotive exerts a force on the
train it is drawing. The force of which we are most aware in our daily
lives is the force of gravitational attraction exerted on every body by the
earth, and is called the weight of the body. Gravitational forces (and elec-
trical and magnetic forces also) can act through empty space without con-
tact. In this respect they differ from the forces mentioned above, where
the body doing the pushing or pulling must make contact with the body
being pushed or pulled.

The process of measuring a physical quantity consists of finding the
ratio of its magnitude to the magnitude of some unit of the quantity. Thus
to measure a force we must find the ratio of its magnitude to that of a unit
of force. Two steps are therefore involved: (1) a definition of the ratio of
the magnitudes of two forces, and (2) the selection of a unit force.’
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One effect of a force is to alter the dimensions or shape of a body on
which the force acts; another is to alter the state of motion of the body.
Either of these effects can be used to define the ratio of the magnitudes of
two forces. In this Chapter we shall consider only the former; the latter
will be discussed in Chapter 5.

The instrument most commonly used to measure forces is the spring
balance, which consists of a coil spring mounted in a case for protection
and carrying at one end a pointer that moves over a scale. The position of
the pointer indicates the extension of the spring above its no-load length.
When one end of the spring is kept fixed and a stretching force is exerted
on the other end, the length of the spring increases and the pointer moves
along the scale. The ratio of the magnitudes of two forces Fy and F3 is defined
as equal to the ratio of the extensions x, and xo which they produce in the same
spring:

Fy _ 1
F, T2

If the definition is to be meaningful, the same ratio must be obtained
for two given forces whatever spring is used. This is found to be the case
provided the spring is not stretched beyond its proportional limit of
elasticity.

A unit of force might now be defined as the force necessary to stretch
a standard spring by some specified amount. Such a definition is open to
the objection that the elastic properties of the standard spring might
change over a long period of time and the standard would not be permanent.
To avoid this difficulty, we define a unit force as the force of the earth’s
gravitational attraction for some standard body at a specified point on the
earth’s surface. That is, the unit force is defined as the weight of the stand-
ard body. Three such units of force are in common use:

One kilogram-force (1 kgf) is defined as the wetght of a standard kilogram
body.

One gram-force (1 gf) is defined as the weight of a standard gram body.
One pound-force (1 1bf) is defined as the wezght of a standard pound body.*

That is, each of these units is defined as the force of the earth’s gravitational
altraction on a specified body. Since the earth’s attraction for a given body
varies slightly from point to point on the earth’s surface, some particular

* We use the abbreviations kef, gf, and Ibf for these units of foree, rather
than %(g, g, and lb, because the names kilogram, gram, and pound are also given
to units of mass. The latter units will be abbreviated kgm, gm, and lbm.
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point must be specified. The effect of the earth’s rotation must also be
taken into account. A more complete discussion will be found in Chapter 13.

Now suppose we wish to calibrate a spring balance in, say, pounds-
force. A standard pound body is first suspended from the balance. The
force stretching the spring is then equal to the weight of the'standard
pound body, or is 1 Ibf. The position of the pointer is noted and is marked
11bf. The position of the pointer at twice this extension can now be marked

2 1bf, and so on.

1-3 Graphical representation of forces. Vectors. Suppose we are to
slide a box along the floor by pulling it with a string or pushing it w1th. a
stick, as in Fig. 1-2. That is, we are to slide it by exerting a force on it.

(a) h)

Figure 1-2

The point of view which we now adopt is that the motion of the box is
caused not by the objects which push or pull on it, but by the forces which
these exert. For concreteness, assume the magnitude of the push or pull
to be 10 Ibf. It is clear that simply to write “10 1bf” on the diagram would
not completely describe the force, since it would not indicate the direction
in which the force was acting. One might write “10 Ibf, 30° above horizontal
to the right,” or “10 Ibf, 45° below horizontal to the right,”” but all the
above information may be conveyed more briefly if we adopt the conven-
tion of representing a force by an arrow. The length of the arrow, to some
chosen scale, indicates the size or magnitude of the force, and the direction
in which the arrow points indicates the direction of the force. Thus Fig. 1-3
is the force diagram corresponding to Fig. 1-2. (There are other forces
acting on the box, but these are not shown in the figure.)

Force is not the only physical quantity which requires the specification
of a direction in space as well as a magnitude. For example, the velocity
of an aircraft is not completely specified by stating that it is 300 miles per
hour; we need to know the direction also. The concept of volume, on the
other hand, has no direction associated with it.

Quantities like volume, which involve g magnitude only, are called



