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’ PREFACE

This book is designed to provide a broad base of material in applied optics
for students and engineers who have a traditional background in clectro-
magnetic wave theory. Often students arc not exposed to the extension of
electromagnetic wave concepts. 1o Kirchhoft-type integral expressions. or
to the relation between wave conceepts and optics. Traditionally. optics books
assume an adequitte background on the part of the reader in wave propaga-
‘tion. and minimize the presentation of the transitional material from simple
wave concepts to integral equations. Thus a good understanding of the
underlying wave theory of applied optics is not provided.

Once the basic integral expression describing the radiated fields is derived
from Maxwell's equations. it 1s used to develop the laws and principles of
oplics and optical devices from the wave-picture point of view. This devel-
opment cnables the reader to understand the origin of the basic laws of
optics. and enables the development of solutions Tor those cases where
first-order approximations fail. The full-wave approach nuikes the presenta-
tion of diffraction theory much easier.

The book then goes on to describe the ideas of modern coherent optical
data processing with examples taken from current rescarch work. Several
examples from bioengineering-related research are presented with sugges-
tions for further work by the interested rescarcher.

Through this kind of development advanced seniors and first-year gradu-
ate students can obtain a grasp of the evolution and usefulness of optical
devices such as lenses. wedges. arrays. and other processor clements. Design
constraints and questions of physical realizability follow quite naturally
from the limits imposed on specific mathematical approximations. This
method of developing design limits from the approximation development
limits the ambiguity associated with ad hoc developments. _

With this early foundation centered on the Rayleigh Sommerfeld integral
équation. the descriptions of optical processor systems. interferometers.
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lasers. holography. and other modern devices follow an evolutionary pat-
tern of a mathematical description, and then go on to physical realization.
in ¢ ddition. the integral eqhation method is used as a basis for introducing
and cxamining the .ideas. of partial coherence theory which are of current
importance-in the design of new detection devices and systems. Lastly, an
overview of scattering theories is presented. The section on scattering theory
begins with some simple observations of everyday phenomena and then
proceeds to compare various current theories and research. The final sec-
tion on multiple scattering provides a connection between the phenomen-
ological and analytical approaches. Where possible, current and new results
are presented to show how much optics, and particularly coherent optics,
have developed in recent years. It seems that this is just a beginning in the
quest to apply this technology.

This book is based on a set of course notes used in a one-quarter course in
applicd optics in the Department of Electrical Engineering at the University
o' Washington. In order to present this material in forty lectures it is neces-
sary to keep a vigorous pace, particularly in the first four chapters. The
problems are primarily designed to involve the student in understanding
the text material, hence there are many derivations which are meant to be
pedagogical. The style by which ideas are developed assumes that all the
problems are worked. For some topics, the related ideas and developments
oceur in later chapters. This technique allows a smoother development of
the basic ideas. and then provides a broader base for understanding actual
systems and examples.
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‘Chapter 1

AN INTRODUCTION
TO PHYSICAL OPTICS

Introduction

In this chapter the basic equations of physical optics are derived, starting
with the differential form of Maxwell’s equations. The wave treatment
approach to optics leads quite nicely to the simpler geometrical (ray) optics
approximation, and also shows the correspondence with the traditional
plane-wave approach, which retains the important diffraction effects. This
derivation enables the reader to understand the limits of the two approxima-
tions and use them appropriately.

Propagation in Free Space

To understand the physical observations encountered in radiating elec-
tromagnetic systems, such as optical systems, a convenient starting point
is afforded through Maxwell’s equations [I, 2]. These equations consist
of four first-order differential equations. Together with the constitutive
relations, a complete set is obtained, having a simple and tractable form.
Solutions of these equations can be obtained when the boundary conditions
are specified. .

The method of solution using these four first-order ¢quations is difficult
because the variables are mixed. One approach to simplifying these equa-
‘tions is to eliminate the mixed-variable character by increasing the order.
This procedure produces the wave equation which can be solved by simpler
techniques.
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2 1 An Introduction to Physical Optics

The procedure starts with the time-dependent form of Maxwell’s equa-
tions

VXE = —0B/dt (1-1a)
VxH =J } D/t (1-1b)
V-D=p (1-1c)
7.B =0 (1-1d)

and the constitutive relations [1, 2]

D —¢E (1-2)
B — uH (1-2b)

where ¢ and u are the permittivity and permeability of the media. If we
consider that the media in which the waves are propagating are isotropic
and homogeneous, then the permittivity and permeability become simple
scalar functions, and Eqs. (1-1) can be simplified. Furthermore, if the region
is source free, then g and J are zero, and Egs. (1-1) become

VXE = —u(@H/dt) | (1-3a)
VxH = «(3E/1) ~(1-3b)
F-E -0 (1-3c)

V-B-—-0 (1-3d)

Restricting consideration to only time-harmonic fields of the form e /'
in the steady-state region, the time-differential terms further reduce to
algebraic form

VXE = jouH (1-4a)
VxXH = — jweE (1-4b)
V-E=0 (1-4c)
7-H=0 (1-4d)

where o is the radian frequency of the waves or 27 times the frequency r
in hertz.

Equations (1-4) still involve mixed variables and can be further reduced
to a more tractable form by taking the curl either of Eq. (1-4a) or of (1-4b)
and using the vector identity '

VxVxF =V -F)— V¥ (1-5)
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To illustrate, the curl of Eq. (1-4a) is -
VXVXiE = jou(V xH) (1-6)
Subsﬁtuting Eq. (1-4b) in the right-hand side leaves
VXV XE = jou(— joeE) - «*peE (1-7)

Since the divergence terms in Egs. (1-4c) and (1-4d) are zero, Eq. (1-7) 1s
simplified by the substitution of Eq. (1-5) to obtain

VE | «»?*ueE -0 (1-8)

Equation (1-8) is known as the wave equation for the electric field.
The derivation of a similar equation for the magnetic field H is included
in the problem set at the end of this chapter. The vector form of Eq. (1-8)
is more complicated than need be. In many cases a relation involving only
a single component will suffice.

To obtain a complete solution to wave equation, appropriate boundary
conditions are required corresponding to the physical structure. A common
case is represented by zero tangential fields at perfect conductors and a
radiation condition [2, 3] which requires the field to be zero at infinity.
Basically, the wave equation describes how fields exist in time and space.
The coupling through the two terms in the equation indicates that traveling
or propagating waves will exist in the region. To illustrate, a plane-wave
cese will be considered.

Plane-Wave Propagation

Consider an infinite half space that has only the boundary condition
defined by the radiation condition [2, 3], which arises from a consfraint
that finite energy exists at infinity. Using this condition, the solutions are
simplified. In addition, consider that only a forward traveling wave exists.
The explicit form. of this assumption will follow in subsequent equations.

Throughout this. treatment we have been considering macroscopic de-
scriptions of the media by using ¢ and p. Conventionally, however, the
permittivity ¢ is replaced by the index of refraction 7, which is

o N el ‘ (1-9)

where &, is the permittivity of free space. The index of refraction basically
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enables a description of how the phase of a wave changes as a function of a
relative or normalized permittivity ¢, where

£ EpE, (1-10)

One additional parameter is the notion of propagation vector k, where
k? is defined as [I, 2] ,
k® = wue (1-11)

The vector direction is associated with the directiqn that the wave front
propagates. In terms of free-space conditions, this can be written

k? = ko*n? (1-12)
Thus the wave equation of Eq. (1-8) reduces for one component to
(V2 + ko*n*)u =0 (1-13)

where u represents any of the three possible components E,, E,, or E..
It should :be noted that the Laplacian V2 in the rectangular coordinates
becomes :

P2 — 3%ax? + 3%dy* -+ 8%/9z* (1-14)

If a simple one-dimensional problem is considered, Eq. (1-13) reduces to
a simple form, The“solution can be provided by an educated guess, or by
noting; _ﬂaa!t the! form of the wave equation is like the classic harmonic
function, leaving ,

u(x) = Aexis ~(1-15)

The amplitude of the wave is 4, and + jkx is the phase of the wave. Sub-
stitution of this'ré'sult shows that it is indeed a solution. The plus/minus
sign is used to indicate either forward or reverse waves. Remembering that
an e 7»/"time dependence was assumed, e*** corresponds to a forward
traveling wave. L '

The somtionm repfescnted by Eq. (1-15) is known as the plane-wave
solution. It is used extensively in the literature, primarily because most
other complicated wave shapes can be decomposed into a sum of plane
waves. It is called a plane wave because the phase fronts have no curvature
or are said to be flat and constant in directions transverse to the direction
of propagation. The wave vector Kk is also obtained quite simply from the
gradient of kx, leaving ik. Further, plane waves arise from sources that are
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very far away, thus satisfying the constraint of a source-free region. Because
of the simple form associated with a plane-wave result, it will be used
extensively in what follows.

Geometrical Optics

The plane-wave result, Eq. (1-15), suggests that a wave, satisfying the
reduced scalar wave equation, can be represented by a simplified form
having separable amplitude and phase terms of the form [3, 4]

u = Ae'S (1-16)

where 4 is the amplitude of the wave and. S is the position-dependént phase
term. Note that in the special case of Eq. (1-15), S is the scalar product of
the propagation vector k and the position vector x. This representation
suggests that the notion of phase fronts moving through space may adequate-
ly describe the field in a particular region. Noting that surfaces can generally
be described by their normals, then surfaces of constant phase, with cor-
responding normals, may have significant meaning. Specifically, it is found
that the normal is aligned with the general propagation vector k, as shown
in Fig. 1-1.

In optics, particularly, these normals are referred to as rays. If the am-
‘plitude of the field 4 associated with a particular phase surface does not
change appreciably over some appropriate distance of propagation, then
the ray representation may embody most of the propagatlon phenomena,
particularly in the short wavelength cases. That is, the wavelength is very

PHASE SURFACES, S(n,y.ﬂ

Fig. 1-1.” Representation depicting equivalence of plame-wave models with large
phase-front curvature and the ray-optic picture.



6 1 An Introduction to Physical Optics

much smaller than the geometric constructs (e.g., lens sizes, focal lengths,
turbulent eddy sizes) in the region. From this notion geometric optics can
be defined as the limiting theory that describes the transport of energy in
ray bundles. The easiest association with ray bundles is in the simple
pictures describing lenses, wedges, and other ideas like Snell’s law, which
are first encountered in sophomore physics books. The notion of equivalence
in these ideas is shown in Fig. I-1.

In homogeneous media, these rays travel in straight lines, independent
of each other. In inhomogeneous media, where the index of refraction is
position dependent, the ray paths will be shown to be governed by a simple
integral of the index of refraction over the traversed path. The basic law
associated with this integral is Fermat's principle. One important result
of this principle is that the paths may not necessarily be straight lines.

It can be shown how geometric optics follows from electromagnetic
theory. To do so, use the plane-wave case governed by the homogeneous
scalar wave equation, Eq. (1-13).

First, map u(x, v, z) into the amplitude ard phase space described by
Eq. (1-16) [5]. Explicitly, divide Eq. (1-13) through by u and recognize
that the first term can be related to the differential of log u as follows:

Viju ¢+ ka®np? - Pi(logu) + (Vlogu)? -+ ko*n*=:0 (1-17)
If Eq. (1-16) is substituted, Eq. (1-17) becomes
VilogA) i Viegdy (VS kp*ti(V2S {2V loga-VS) -0 (1-18)

This complex equation can be separated into two independent equations
by noting that the real and imaginary parts must each be zero. Thus the
separated equations become

Vilog A) ¢ (Vlog AR — (VS)2 ; ky2n? - 0 (1-19a)
and _
7S i Wiogd-VS 0 (1-19b)

The mathematical implementation of the short-wavelength approximation
follows by dropping certain terms using order of magnitude arguments.
This will produce a shorthand equation that describes the case of geometric
optics. .

Without much loss of generality, the analysis can be restricted to the
case where amplitude changes in the medium can occur only over distances
on the order of scale size changes, such as a lens size, an inhomogeneity
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length, boundary size, etc. Denoting this scale by /, the short-wavelength
approximation is represented by writing / 3> 2.

For the plane-wave representation, the gradient of S, which corresponds
to the phase-surface normal, varies as the propagation .vector k. Further,
Eq. (I-11), which defines the magnitude of k, can be rewritten in terms of
wavelength as

k- 272 ' (1-20)
Using this expression for k, the third term in Eq. (1-19a) can be written as
VS):~ (1/2)* (1-21)

The first two terms of Eq. (1:19a) can be reduced to
V24/4 = V2(log 4) - (V log A)® (1-22)

using the arguments leading to Eq. (1-17). However, since amplitude
changes only occur over distances of the medium scale size, Eq. (1-22)
varies like inverse length squared,

VA4 ~ (1/1)* (1-23)

Since the last term in Eq. (1-19a) also varies like the inverse wavelength
and since

(/1 < (1/2)? (1-24)
Eq. (1-19a) can be reduced to
(VS)* == (kon)? (1-25)

which is classically called the eiconal equation. Thus, the eiconal equation
describes the phase-surface gradients or unnormalized surface normals in
terms of the medium propagation vector. In this case the eiconal function
S is the function describing the phase surface. The gradient of S leads to
the notion of a ray traveling perpendicular to the surface [3].

Thus, solutions of the differential equation, Eq. (1-25), gave the wave
fronts associated with a geometrical-optics representation of propagation.
This is a useful concept for many cases. It has limitations, however, arising
from the contributions of the dropped term V34/A4. Physically, this term
corresponds to the bending or curvature of the waves by medium objects.
The description of the phenomenon of bending of waves around obstacles
is given by diffraction theory!



