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E F A C E

The fifth edition of The Calculus with Analytic Geometry, like the other
four, is designed for prospective mathematics majors as well as for students
whose primary interest is in engineering, the physical and social sciences, or
nontechnical fields. As with previous editions, 1 have endeavored to achieve
a healthy balance between the presentation of elementary calculus from a
rigorous approach and that from the intuitive and computational point of
view. Bearing in mind that a textbook should be written for the student, I
have attempted to keep the preséntation geared to a beginner’s experience
ang.maturity. I desire that the reader be aware that proofs of theorems are
necessary and that these proofs be well motivated and carefully explained so
that they are understandable to the student who has achieved an average
mastery of the preceding sections of the book. If a theorem is stated without
proof, I have generally augmented the discussion by both figures and exam-
ples, and in such cases I have always stressed that what is presented is an
illustration of the content of the theorem and is not a proof.

In this edition, the structure of the text has been altered. The material i is
now divided into four segments:

Prelude

Part 1 Functions of a Single Variable

Part 2 Infinite Series

Part 3 Vectors and Functions of More Than One Variable

There are fifteen sections appearing at the ends of some of the chapters that
are designated as supplementary. They are self-contained and can be in-
cluded or omitted without affecting the understanding of subsequent mate-
rial. These supplemepmry sections are of three types:

o

B

1. Additional subject matter that is not necessarily part of the traditional

syllabus of a calculus course: Sections 3.12, 7.5, 8.11, 8.12, 10.9, 13.9, and
18.5.

2. More applications of the calculus: Sectxons3 11, 4.10, 5.8, 5.9, and 16.6.
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PREFACE

3. Further theoretical discussions including proofs of some theorems: Sec-
~ tions 1.9, 1.10, and 15.8.

“Prelude” consists of the single Chapter 0, “Topics in Precalculus.” It
contains basic facts about the real-number system, and this treatment is less
detailed than in previous editions. The introduction to analytic geometry in
this chapter includes the traditional material on straight lines as well as that
on the circle. The definition of a function, operations with functions, and
particular kinds of functions are discussed. The presentation of the six trigo-
nometric functions here allows their early use in examples of differentiation
and integration of nonalgebraic functions

Part 1, “Functions of a Single Variable,” is comprised of Chapters 1
through 10. A thorough discussion of limits'and continuity is contained in .
Chapter 1. The definition of limit is stated in the form “if a then b” rather
than its logical equivalent “b whenever a,” and this form of the definition is
used throughout the text. Proofs of some theorems on limits appear in
Supplementary Sections 1.9 and 1.10. The treatment of continuity has been
modified, and there is an added discussion of continuity of the trigonometric
functmns Some additional geometrical interpretations are included.

In Chapter 2, “The Derivative and Differentiation,” before giving the
formal definition of a derivative I have defined the tangent line to a curve to
demonstrate in advance its geometrical application. The derivatives of all six
trigonometric functions are presented here, and they are then available as
¢xamples for the initial presentation of the chain rule. Section 2.7, “The
Derivative of a Composite Function,” has been rewritten with more exam-
ples and illustrations. The chain rule is now stated with composite function
notation and the proofs for both the special case and ‘the general case are
given with this symbohsm The discussion of notations for the derivative has

been rewritten with the Leibniz notation ‘—d& introduced earlier than in pre-

vious editions. The section on the differential has been moved forward to this
chapter.

Chapter 3 gives the traditional applications of the derivative to prob-
lems involving maxima and minima, as well as to curve sketching. There has
been a reordering of topics in this chapter. Concavity and points of inflection
appear before the second-derivative-test, and all the graphing techniques are
presented before the second section on absolute extrema. Infinite limits are
introduced here because they are useful for graphing. They also can be
applied when determining extreme function values. New to this edition are
the discussion of obligue asymptotes in Section 3.8 and the presentation of
Newton’s method in Supplementary Section 3.12.

The topics of antidifferentiation and the definite integral are combmed
in Chapter 4. Section 4.2, “Some Techniques of Antidifferentiation,” has
been rewritten with more examples and illustrations, and the antidifferen-
tiation technique of “changing the variable” is used instead of “substitu-
tion.” The chain rule for antidifferentiation is now proved with composite
function notation. I use the term “antidifferentiation” instead of “indefinite
integration,” but the standard notation f f(x) dx is retained. This notation
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PREFACE X

will suggest that some relation must exist between definite "integrals and
antiderivatives, but I see no harm in this as long as the presentation gives the
theoretically proper view of the definite integral as the limit of sums. In
Chapter 4, there is an introduction to differential equations, and the com-
plete discussion of area of a plane region appears here. Most of the applica-
tions of the definite integral are now in a single chapter (Chapter 5) as was the
situation in the first three editions; two of them are in supplementary sec-
tions.

The coverage of inverse functions in the first two sections of Chapter 6
has been revised. Also in Chapter 6, applications of the natural exponential
function include the ldws of growth and decay as well as some new material ‘
on bounded growth involving the learning curve. In Chapter 7, the domains
of the inverse secant and inverse cosecant functions have been redefined so
that the formulas for their derivatives do not involve absolute value. The
section on inverse hyperbolic functions has been designated as supplemen-
tary.

In Chapter 8, the exercise sets have been expanded to include more
applications of the various techniques of integration. Section 8.6 contains
new coverage of logistic growth with applications to biology and sociology.
Numerical integration has been moved to this chapter. A new section, la-
beled supplementary, involves the use of a table of integrals.

Chapter 9, “Indeterminate Forms, Improper Integrals, and Taylor’s
Formula,” has been moved forward to precede the one on analytic geometry
topics. A discussion of the probability density function has been added to-
give another application of improper integrals. Chapter 10, “Polar Coordi-
nates and the Conic Sections,” contains a major rewrite of the corresponding
material that appeared in the fourth edition. The cartesian equations of the
conics are obtained first. The polar equations do not appear until Section
10.8, where they occur as part of a unified treatment of conic sections. New
to this edition is a discussion of when the limagon has a dent and when it

"hasn’t.

The presentation of infinite series appears in a separate part (Part 2)to
make it more apparent that it is self-contained and can be covered anytime
after the completion of Part 1. Some of the material has been rewritten with
more motivation added. The treatment is now in two chapters jnstead of
one, and some of the longer sections in the fourth edition have been split into
two. New to this edition is a discussion of the root test. Also new is a
summary of tests for convergence of an infinite series. The exercise sets in
Chapters 11 and 12 have been expanded to include more applications.

Part 3 contains the calculus of functions of more than one variable and
vector calculus with a vector approach to solid analytic geometry. In Chapter
13, “Vectors in the Plane and Parametric Equations,” and Chapter 14,
“Vectors in Three-Dimensional Space and Solid Analytic Geometry,” there
has been a rewriting and reordering of some of the material. The discussions
of scalar projection, vector projection, and cross product have been ex-
panded and the triple vector product introduced. Additional applications
have been incorporated and new examples and illustrations have been
added.
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In Chapter 15, “Differential Calculus of Functions of More Than One
Variable,” the treatment of functions, limits, and continuity has been re-
vised with new examples and illustrations. The material on differentiability
and the total differential has been rewritten. The proof of the theorem that
gives sufficient conditions for a function of two variables to be differentiable
at a point has been deferred to Supplementary Section 15.8. New topics in
Chapter 16 include exact differential equations, appearing in Section 16.5,
and the method of least squares, which is the subject of Supplementary
Section 16.6.

Chapter 17, “Multiple Integration,” remains essentially the same as in
the fourth edition, although some new exercises have been incorporated.
The section on Green’s Theorem that appeared in the chapter on multiple
integration in the fourth edition is now part of Chapter 18, “Introduction to
the Calculus of Vector Fields,” which has an expanded coverage of vector
calculus. The discussion of line integrals has also been moved to Chapter 18.
The new topics here are surface integrals, divergence and curl in three di-
mensions, Gauss’s Divergence Theorem, and Stokes’s Theorem. The ap-
proach in Chapter 18 is intuitive and the applications are to physics and
engineering.

There are now over 7000 exercises that have been revised and graded to
provide a wide variety of types that range from computational to applied and
theoretical problems. The answers to the odd-numbered exercises are given
in the back of the book, and the answers to the even-numbered ones are
available in a separate booklet. Detailed step-by-step solutions for nearly half
the even-numbered exercises (those having numbers divisible by four) ap-
pear in a supplement to this text, An Qutline for the Study of Calculus, by
John H. Minnick, published by Harper & Row, in three volumes.

Louis Leithold
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PRELUDE

You must enter into the study of calculus with a knowledge of certain mathe-
matical concepts. In the first place, it is assumed that you have had courses
in high school algebra and geometry. Secondly, there are particular topics that
are of special importance. You may have studied these topics in a precalculus
course or you may be exposed to them here in Chapter 0 for the first time.

You need to be familiar with facts about the real numbers and have facil-
ity with operations involving inequalities, and thjs'material forms the subject
matter of the first section. The next three sections contain an introduction
to some of the ideas of analytic geometry that are necessary for the sequel.

The notion of a function is one of the important concepts in calculus,
and it is defined here as a set of ordered pairs. This idea is used to point up
the concept of a function as a correspondence between sets of real numbers.
You have probably studied trigonometric functions in a previous course, but
a review of the basic definitions is presented, and important formulas you will
need for the purposes of calculus are provided. There is also an application
of the tangent function to the slope of a line.

Dependent upon your preparation, Chapter 0 may be covered in detail,
treated as a review, or omitted.










