Introduction to PHYSIOLOGY

VOLUME 2 BASIC MECHANISMS

PART 2

HUGH DAVSON M. B. SEGAL

Introduction to PHYSIOLOGY

ÿ J

1

VOLUME 2 BASIC MECHANISMS

PART 2

HUGH DAVSON

Physiology Department, University College London, England

M. B. SEGAL

Sherrington School of Physiology, St. Thomas's Hospital London, England

ACADEMIC PRESS

LONDON · NEW YORK · SAN FRANCISCO

A Subsidiary of Harcourt Brace Jovanovich, Publishers

ACADEMIC PRESS INC. (LONDON) LTD. 24/28 Oval Road London NW1

United States Edition published by ACADEMIC PRESS INC. 111 Fifth Avenue New York, New York 10003

Copyright © 1975 by HUGH DAVSON

All Rights Reserved

No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the publishers

Library of Congress Catalog Card Number: 75 5668 ISBN: 0 12 206802 5

Printed in Great Britain by The Whitefriars Press Ltd., London and Tonbridge

PREFACE

We can think of two ways of composing an Introduction to Physiology. First we may take a large standard text and sieve the material contained in it to free it of as much experimental material, argument and other "extraneous matter" to reduce its bulk to about one third of the original. Alternatively one may compose something entirely new, expounding as simply as feasible the basic scientific principles governing the functioning of the animal. The former method has, we think, been employed before, and the result has been a *synopsis* of, rather than an *introduction* to, physiology. By memorizing it almost word-for-word the medical student probably passes muster at an undiscriminating examination, and completes his medical education with a very poor understanding of the basic principles of medicine.

Pursuing the latter method we found that the first draft was embarrassingly large, and in reviewing what had been written with a view to shortening the book, it became clear that any serious surgery would destroy its character since it was, in effect, rather more than an Introduction containing—to use a musical term—a great deal of "development" too. Rather than abandon the project of producing an Introduction that was both short and adequate, we carried out a different kind of surgery, namely the division into several volumes. Volumes 1 and 2, which we now present, are an introduction to the basic mechanisms whereby the animal absorbs, distributes and transforms its energy-giving materials; and whereby the energy thus made available is utilized in such fundamental activities as muscular contraction, the transmission of messages by both nerves and hormones, the defence mechanisms and in reproduction.

The difficulties in understanding physiology arise in the fundamental principles governing the activities of the animal's parts, such as the flow of fluids, the conduction of the nervous impulse, the elimination of secretions from a cell or epithelium and so on. If the student has a firm grasp of these principles, the way is clear for the understanding of the rest of physiology, which consists in the analysis of control mechanisms. The remaining volumes are designed to enable the student to take up where the first two left off; thus Volume 3 is devoted to visceral

PREFACE

control mechanisms and may be regarded as the "development" of the themes introduced mainly in Volume 1. Very arbitrarily the control of somatic motor activity and of reproduction have been put together to make Volume 4; this is only because their inclusion in Volume 3 would have made it too large for convenience. Volume 5 deals with sensory mechanisms and higher integrative processes, involving the cerebral cortex.

A few words on the way the volumes have been written. The present two volumes, being concerned largely with fundamentals, require little or no documentation, so that we have contented ourselves mostly with general references to reviews and texts at the end of each volume. This does not mean that the information has been culled only from these sources, and it is rare if we have quoted work that we have not read in the original. In the remaining volumes the subject matter has been treated in greater experimental depth, so that a more elaborate documentation, comparable with that found in Starling's *Principles of Human Physiology*, has been employed.

To conclude, we think that a study of the completed work will provide the student of physiology, taking this as part of a larger course, such as in medicine or dentistry, with knowledge of the subject sufficient for his requirements; for the student intending to make physiology his career the book will, we trust, be a proper "Introduction".

> HUGH DAVSON M. B. SEGAL

October 1974

此为试读,需要完整PDF请访问: www.ertongbook.com

CONTENTS

ł

Pretace	v
Chapter 1 The Nervous System	
Control Mechanisms	1
The Nervous System	3
The Neurone	3
Axonal Propagation of the Message	10
The Mechanism of the Action Potential	11
The Flow of Current	18
Accommodation	24
Propagation of the Impulse	26
Repetitive Discharges	34
Neuro-effector Transmission	35
Skeletal Neuromuscular Transmission	35
The End-plate	35
The Effector Response	36
Fatigue	45
Mechanism of Release of Transmitter	48
Facilitation	49
Excitation-Secretion Coupling	50
Twitch and Slow Fibres	52
Effects of Denervation	54
Movement of Material within the Axon	55
Invertebrate Muscle Fibre	62
Transmission in the Nervous System	65
The Nerve-Nerve Synapse	65
Organization of the Nervous System	67
Reflex Behaviour	71
Electrical Studies of Spinal Motor Neurones	79
Acetylcholine in Central Transmission	84
Non-cholinergic Transmission	86
Convulsants	87
The Brain	88
The Tracts of the Spinal Cord	99
The Autonomic System	100
Sympathetic and Parasympathetic Division	101
Sensory Inflow	1.04

Transmission in	the Autonomic System	105
"Receptors"	•	116

Chapter 2 Hormonal Control

Hormones		120
Storage and Release of Hormones		127
The Pituitary Gland		131
Structure of Pituitary Gland		132
Functions of Anterior Lobe		133
Functions of Posterior Lobe		133
Neurosecretory Cells		134
Hypothalamic Control of Adenohypophysis		136
Neurohumours and Neurohormones		141
Neuroendocrine Integration		141
Electrical Stimulation of Hypothalamus		143
Binding of Hormones to Carrier Proteins		143
Assay of Hormones		147
The "Second Messenger": Cyclic AMP		150
Glycogenolysis		151
Mechanism of cAMP Action		154
Messenger RNA and Hormonal Action		155
Activation of Protein Kinases		158
Breakdown of cAMP		158
Control of Lipolysis		159
Synaptic Transmission		160
Corticosteroids		161
Hormonal Control of Transport		'161
Enzyme Synthesis		161
Prostaglandins		164
Structural Basis		165
Possible Transmitter Action		166
Cyclic AMP and Prostaglandin Action		167
Inactivation	ć	168
Functions of the Prostaglandins		168
The Fate of Hormones		169
The Adrenal Gland		170
Medulla and Cortex		171
Vascular Supply		171
Adrenal Medulla		173
Adrenal Cortex		179

.

.

CONTENT	5
---------	---

Function of the Adrenal Cortex	180
Cortical–Adrenal Relations	182

Chapter 3 The Effector Systems

Contraction of Skeletal Muscle	186
Structure	186
Force of Contraction	195
Development of Tension	199
Excitation-Contraction Coupling	207
Energy Aspects of Muscle Contraction	212
Heat Production	214
Mammalian Twitch and Slow Fibres	219
Structural Basis of Contraction	220
The Proteins of Muscle	220
Actin-myosin Interaction	223
Models of the Contractile System	225
Tropomyosin-Troponin Control System	226
Activation and Contraction of Cardiac Muscle	230
Structure	230
Experimental Methods	234
Mechanical Aspects of Contraction	238
Basis of Pacemaker Activity	239
Excitation-Contraction Coupling	241
Potentiation of Muscular Contraction	244
Nervous Control of Beat	247
Acceleration	250
Activation and Contraction of Smooth Muscle	251
Structure	251
Mechanical Aspects	253
Electrical Basis of Spontaneous Activity	255
Electrical and Mechanical Activities	260
Nervons Influences on Smooth Muscle	263
Nerve Endings on Smooth Muscle	264
Effects of Nervous Stimulation	266
Mechanical Basis of Muscle Tone	269
Skeletal Muscle	270
Smooth Muscle Tone	274
The Secretory Cell	279
Excitation-Secretion Coupling	282
Mechanical and Chemical Events	285

ix

CONTENTS

Chapter 4. The Cells of the Blood and the Response to Injury	
Protective Mechanisms	287
The Blood Cells	287
The Erythrocyte	287
The Leucocytes or White Cells	289
Haemopoiesis	296
The Reticulum	296
Blast Transformation	297
The Lymphocytes	300
The Spleen	302
The Nature of the Haemopoietic Stem Cell	305
Control of Erythropoiesis	307
Platelets	310
Leucocytes	310
Lymphocytes	310
The Response to Injury	311
The Inflammatory Response	311
Immune Reactions	314
Haemostasis	316
The Platelet Plug	317
The Blood Clot	318
Behaviour of Leucocytes	326
The Humoral Inflammatory Agents	333
The Immune Response	340
Antibodies	343
Sensitivity	347
Production of Antibodies	349
The Role of the Thymus	354
Antigen-Cell Reaction	360
Delayed Hypersensitivity	363
Complement	365
The Blood Groups	369
Chapter 5 Reproduction and Lactation	
Reproduction	378
Meiosis	379
Determination of Sex	383
Fertilization	383
The Female Reproductive System	.388
Oestrus Cycle	389

х

CONTE	NTS
-------	-----

The Male System	397
Migration of Spermatozoa to Oviduct	403
Migration of the Ovum	405
Implantation and Development of the Ovum	407
Nutrition of the Embryo	409
Parturition and Puerperium	412
Lactation	. 414
Structure of the Mammary Gland	414
Chemical Composition of Milk	418
The Secretion of Fat	422
Transport and Uptake of Fat	424
Proteins and Lactose	429
Basic Mechanisms of Secretion	429
Synthesis of Lactose	431
Electrochemical Aspects of Secretion	433
Colostrum	436
BIBLIOGRAPHY	439
SUBJECT INDEX	457

xi

i

CHAPTER 1

The Nervous System

CONTROL MECHANISMS

In describing the basic principles of distribution of material in the body we have concentrated our attention on the mechanisms of the processes, showing how far the physiologist has been able to describe them in terms of concepts familiar to the physicist and chemist. We have, as far as possible, avoided touching on the mechanisms by which these physiological processes are brought into action and (of more importance) the mechanisms by which they are controlled to the point that the activities of the parts are smoothly integrated to ensure the adequate functioning of the whole organism.

Autoregulation

To a small extent many of the physiological processes that we have already described have a built-in control system, in the sense that they control themselves; this phenomenon is given the general name of autoregulation. For example, in the formation of the extracellular fluid, an increased filtration at the arterial end of a capillary creates the condition for an increased absorption at the venous end; the loss of fluid tends to raise the concentration of proteins in the remaining plasma, and this results in an increased colloid osmotic pressure. Again, Starling's Law of the Heart is an expression of an autoregulatory activity in the sense that, as the load presented to the heart is increased, the force of contraction augments and results in a greater output. In considering the functioning of the kidney, we found a remarkable degree of autoregulation which ensures that the rate of flow of blood through the organ remains constant in spite of large variations in arterial pressure, a process that occurs when the kidney is removed from all possible central control.

1

Feed-back

With all physiological activities, however, we find additional control mechanisms that permit a fine adjustment of a given physiological process to the needs of the organism as a whole. The basis of this control may be illustrated by the well known principle of the thermostat, illustrated in Fig. 1.1. The sensor (S) is able to respond in some manner to a change in the feature that we wish to regulate, in this case the temperature; it does this by expanding, and the result of the expansion is to close an electrical switch, which operates a relay that

Fig. 1.1. The thermostat. The sensor (S) detects changes in temperature of the bath by changes in length of the column of mercury (M). If the bath temperature exceeds that set on the thermostat (T), the column of mercury rises and completes the circuit that switches off the current to the heating coil (H) by means of a relay in controller (C). Conversely, a fall in temperature opens the circuit and the heating coil now warms the bath to the preset temperature.

finally cuts off, or reduces, the supply of heat from an electrically heated source (H). We call the heater the effector in so far as it carries out the function that we are concerned with, namely keeping the bath warm. Between the sensor and the effector we have a communicating or *feed-back* system that carries the information regarding the temperature of the tank to the control centre and from the control centre to the effector; in the mechanical example considered this is contributed by the wires and relay. In living animals the sensor is called the *receptor*; the major communicating system is the *nervous* system, and the effectors are muscle fibres or other cells specialized to carry out specific functions, such as secreting enzymes in digestion.

Hormone Control

Working alongside this nervous system of control we have a hormonal or endocrine system, in which the communication is carried out by transport of a chemical ejected into the blood-stream, through which it reaches its "target cells"—effector cells that respond to this bloodcarried humoral agent. As we shall see, the distinction between the nervous and humoral mechanisms is often not as striking as at first thought; the transmission processes are indeed fundamentally different, in so far as, in the one case, the information is carried along nerve fibres and in the other, is carried in the blood-stream. However, in both cases the effectors are brought into action by a chemical agent, either a hormone such as secretin or adrenaline or a neurotransmitter like acetylcholine or noradrenaline.

THE NERVOUS SYSTEM

The Neurone

The basic unit in nervous control is the neurone, a cell that has become specialized to respond to a change in its environment-the stimulus-and to carry this response as a message to be transmitted either to another neurone or, more rarely, directly to an effector cell. According to their functions, the neurones have a wide variety of forms, as illustrated in Fig. 1.2 which shows several types. They have a common structure, in the sense that there is the cell body or *perikaryon* (also called the soma) containing the nucleus and most of the metabolic apparatus of the cell; there are also the axon and one or more processes called *dendrites*. The variability in form of neurones is largely caused by the wide variety of dendritic ramifications. It is along the axon that the neurone transmits its message, whilst it is along the dendrites that influences from other neurones are transmitted. Thus the message passes from the dendrites to the perikaryon, and away from the perikaryon along the axon. Where interconnections between neurones are concerned, the axon of the "transmitting" neurone may make its connections with the dendrite of the "receiving" neurone, or with its perikaryon (an "axo-somatic contact") or even with the initial part of its axon (an "axo-axonic contact").

Grouping of Neurones

The processes from neurones are grouped together to form *nerves*, or *tracts*, many of these being visible to the naked eye. The perikarya, $_{1,P,-2}$ 2

Fig. 1.2. Some of the types of neurone found in the nervous system. (a) motor; (b) bipolar sensory; (c) spinal interneurone; (d) cortical; (e) cerebellar.

or cell bodies, are likewise grouped together to form *nuclei* or ganglia which may be situated within or outside the *central nervous system*, the latter being defined as the brain and spinal cord.

The Axon

The basic organization of the nervous system can only be adequately appreciated with a knowledge of the nature of the messages a given neurone can transmit and the manner in which a stimulus, applied.

Fig. 1.3. A motor neurone and investing membranes. The neurone consists of a cell body with nucleus and cytoplasm. The cell body gives off projections, the dendrites, and the long axon in the case of the motor nerve. The axon is covered by a neurilemma or Schwann sheath, which encloses a layer of lipid or myelin, the electrical insulator of the axon. (Greep, "Histology", 1966, McGraw Hill.)

say, to the surface of the skin, can initiate the message that the nerve, with its endings in the skin, transmits to the brain. The neurone (Fig. 1.3) is a cell, and like all cells is separated from its environment by a plasma membrane which extends over its whole surface. The

5

axon consists, from without inwards, of an outermost cellular covering (the *neurilemma* or *Schwann sheath*); a myelin sheath of mainly lipoid material which acts as an electrical insulator—this may be thick in the typical *medullated* or *myelinated* axon, or very thin or non-existent in the *non-myelinated* axon; beneath the myelin sheath is the plasma membrane enclosing the *axoplasm*, the fluid or semi-fluid cytoplasm of the axon.

Ultrastructure

The endosplasmic reticulum of the neurone is concentrated in the perikaryon, where it was recognized by the light microscopists by virtue of its basophilia and described as *Nissl substance*; in the electron microscope its homology with that of other cells is easily recognized. Both perikaryon and the processes contain mitochondria. More recently two other structures have been identified, namely microtubules and microfilaments similar to those described in other cells (Vol. 1). The organization of these fine structures varies with the neurone and the particular process; thus in the dendrites of most neurones the filaments are rare, the major component being the microtubule, an inverse relation being found in the axon. Separation and analysis of the microtubules showed that they were built up of the protein, *tubulin*.

Schwann Sheath

The Schwann sheath is made up of characteristically flattened cells which remain *in situ* as apparently permanently fixed elements. However, they have by no means lost the powers of movement or reproduction so that when the underlying axon and myelin degenerate, as when the nerve fibre is severed, the Schwann cells tend to become more spherical, exhibiting continuous changes in shape until they finally take up new positions on regenerating material. In order to be able to re-sheathe a growing axon-stump they must, of course, migrate, and they move at some 49–90 μ per 24 hr.

Axon-Schwann Cell Relations. The relations of the axon to the myelin sheath and Schwann cell have been indicated earlier (Vol. 1, Ch. 2) when discussing the origin of the myelin as a lamellar arrangement of plasma membrane derived from the enclosing Schwann cell. To recapitulate, the axon with its limiting plasma membrane is enveloped by the Schwann cell, whilst the myelin sheath is derived from the Schwann cell's own plasma membrane and is to be regarded as part of the Schwann cell (Fig. 2.13, Vol. 1). The non-myelinated axon is likewise enclosed in a Schwann sheath, being enveloped within the Schwann cell, as illustrated in Fig. 1.4, where it is called a *Remak*

(b)

Fig. 1.4. (a) Illustrating Remak axons embedded to different extents in a single Schwann cell. (Courtesy J. D. Robertson.) (b) The node of Ranvier. The upper half of the diagram illustrates the structure found in peripheral myelinated nerve (PNS), and the lower half illustrates that found in the central nervous system (CNS). In the PNS the Schwann cell provides both an inner collar (Si) and an outer collar (So) of cytoplasm in addition to the compact myelin. Outer collar (So) is extended into the nodal region as a series of loosely interdigitating processes. Terminating loops of the compact myelin come into close apposition to the axolemma in region near the node apparently providing some barrier (arrow at a) for movement of materials into or out of the periaxonal space (marked by *). The Schwann cell is covered externally by a basement membrane. In the CNS the myelin ends similarly in terminal loops (Tl) near the node and there are periodic thickenings of the axolemma where the glial membrane is applied in the paranodal region. These may serve as diffusion barriers and thus confine the material in the periaxonal space (marked *) so that movement in the direction of the arrow at (a) would be restrained. At many CNS nodes there is considerable extracellular space (ECS). (Bunge, Physiol. Rev. 1968, 48, 197.)