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1 Optical Systems and Ideal Optical
Images

The symmetrical optical system, i.e. a system with symmetry about an axis of
revolution, is the type of system most frequently met as a design problem; this
includes systems folded by means of plane mirrors or prisms, since it is trivial
to unfold them for optical design purposes. However, non-symmetrical
systems are not uncommon, e.g. some kinds of spectacle lens, spectrographic
systems, anamorphic projection systems and systems contaiming holographic
optical elements. In this book we shall be mainly concerned with symmetrical
systems but some discussion of non-symmetrical systems will be given, chiefly
in connection with raytracing. '

1.1 Initial assumptions

The treatment will be based mainly on the geometrical optics model but there
will be occasional references to physical optics in the form of scalar wave
theory; this is needed for dealing with aberration tolerances. In geometrical
optics the essential concept is the ray of light; in this chapter we assume this as
an intuitive notion, deferring more precise definition to Chapter 2. It is then
possible to formulate definitions of ideal image formation using only the
concept of rays and the assumption that to one ray entering the system there
corresponds one and only one ray emerging. We do not at this stage invoke the
laws of reflection and refraction, and we make no assumptions about how the
transformation from object to image space is accomplished: i.e. there might be
non-spherical surfaces, media of continuously varying refractive index, etc., in
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“

the system. However, it is convenient to assume that the entering and emerging
rays are straight line segments, or in physical terms that there are clearly
defined regions in the object and image spaces in which the respective
refractive indices are constant. [deal image formation for a general system then
means that a pencil of rays from a point in object space becomes a pencil also
passing through a single point in image space and that this holds for some one-
or two-dimensional object surface. This does not get us very far but if we
assume a symmetrical system we can obtain many other properties of ideal
image formation to which the performance of a real well-corrected system
should approximate.

The first notions of ideal image formation through symmetrical systems are
dueto A. F. MObius (1855). A few years later James Clerk Maxwell (1856, 1858)
formalized the concept of an ideal system without invoking any physical
image-forming mechanism. It is essentially Maxwell's concept which we
describe in this chapter.

1.2 Ideal image formation in the symmetrical optical system
Take the z-axis of a right-handed Cartesian coordinate system as the axis of

revolution of a symmetrical optical system, as in Fig. 1.1, and the y-axis in the
plane of the diagram: the origin O is taken as any convenient point on the uxis.

Yy . y’ p!
o2 =
x x!
—_— ——— - - —>
0 z o' z

FIG. 1.1. Coordinates for the symmetrical optical system

If, as is customary, the light is supposed to travel from left to right then this
coordinate system is in the object space and we take a similar system O'x'y’z’ in
the image space, the respective axes being parallel to each other.

All points and rays in object space are referred to Oxyz and those in image
space to O'x’y'z. The rays are shown as straight line segments but we
introduce immediately the generalization that they are to be regarded as
extending indefinitely in either direction; thus the object space extends right
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through the optical system and through image space and similarly image space
is extended infinitely in both directions. This is an essential convention for
dealing with the details of image formation in the intermediate spaces of a
system, where the image from one optical element is the object for the next,
sutce this image-cum-object is very frequently virtual.

Ideal image formation from the x—y plane to the x'-)" plane can then be

defined as follows. All rays through any point P on the x-y plane must pass
through one point P’ on the x'~y’ plane and the coordinates (x',y’) are
praportional to (x, y); the constant of proportionality, which is, of course, the
magnification, depends on the nature of the optical system and on the axial
pusttions of the two planes. This can be summarized by saying that any figure
on the x—y plane is perfectly imaged as a geometrically similar figure on the x'~
3" plane. It will be shown that if there are two such pairs of conjugate planes
then any plane in object space s imaged ideally on another plane in image
space. »
There is considerable interest in examining this Maxwellian ideal image
formation because, as will be seer: in Chapter 3, the image formation in any real
symmetrical system approximates to the ideal i1 a narrow region sufficiently
close to the optical axis. We shali therefore study this ideal image formation in
more detail. :

Let Oxy and O,x,y, be two planes in object space and iet O'x’y’ and
O;x}y; be the corresponding planes in image space. We suppose the image
formation to be perfect between these pairs of planes; thus, in Fig. 1.2, if @

A
0\
Q

"

)

F1G. 1.2. Ideal image formation

and a, are two-dimensional vdctors in the planes Oxy and O;x,y, from the
origins to points P and P,, the corresponding vectors in the image planes will
be given by

a = m. (ll)

a;, = ma,
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where m and m1y are appropriate magnification factors between these planes.
These equations imply that a// ravs through P pass through P ..nd sinnlarhy
for P, and P} so that they express th. assumption of perfect image formation
between the two planes.

Now we consider points P; on a third plane O,x,1,: we enquire whether
all rays through P, also pass through one point P; in image space and, it 5o.
whether this point always lies on one plane perpendicular to the axis and is
rclated to P, by an equatios similar to eqn (1.1). We have

a, ~ /7, (a, —a)+a (1.2)

where 7, and z, are the coordinates of O, and O, with respect to O, this being
true for all points P and P, which ar: on a ray through P,. If a point P; with
the above properties exists, then we must also have

a, = (z;/:)(a; — a') + & (1.3)

a, = mya,. (1.4)

Equations (1.3) and (1.2) var be rearranged as
a, = (mzy/za, + m(l — zy/z))a (1.3%)
a, = (z,/z)a, + (1 — z,/2))e (1.2")
and these will be consistent with eqn (1.4) if we can find z; and mi, to satisfy
mzy2y = myzyzy and m(l — 3/ ) = my(l — /5! {1.5)
clearly this can be done since we have two equations and two unknowns, and
the values will hold good for all points P,. Thus we have shown that ideal

image formation for two pairs of conjugate planes implies ideal imagery for
‘all other pairs.

1.3 Properties of an ideal system

We can now develop many properties of ideal systems which are to be used
in the paraxial approximation. For this purpose, we indicate the optical sys-
tem schematically as in Fig. 1.3, but it must be understood that it may extend
for a considerable distance along the axis and the constructions to be ex-
plained may take place inside the physical system, i.e. with virtual parts of
rays.

In Fig. 1.3, let r, be a ray from the point at infinity on the axis in object
space. i.c. a ray parallel to the axis. It meets the axis in image space at some
point F’; this must be the image of the axial point at infinity in object space
since two rays pass through both these points, namely the ray r, and the ra:
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r / v_' T ’:'.
[ R i L T
> L \i\\‘ P
4 : T~
\ : —
e e N e (e
Axis ‘ = £

Fic 1.2 Principal focus and principal point

along the axis, and we are assuming ideal image formation.t The point F' is
called the second principal focus or image-side principal focus,
Let the segment of ray r, in object space be produced until it meets the
segment in image space at Py ; a plane nermal to the axis through Py meets the
_axis at P’ the second or image-side principal point, the plane itself being the
second or image-side principal plane.
Similar constructions and definitions lead to the object-side principal focus
and principal point, These constructions can be made on the same diagram
with the rays r, and r, parallel to the axis chosen to be at equal distances from

i A
=T
T S S J—
£ ~oN
)
/

Fic. 1.4. Unity magnification between the principal points

the axis. as in Fig. 1.4, which shows all four points F, F’, P, P’. The two seg-
ments of r, meet at P; and those of r, at P,. Both rays r, and r, pass through
P, and P;. 50 these points must be object and image; furthermore, using the
properties of ideal image formation, the planes normal to the axis through P,
and P, must be conjugates and since by construction PP, = P'P; the magni-
ficaion between these planes must be unity. For this reason, P and P’ are
sometimes called unit points.

By itheir definitions. I and P are always in object space and F' and P’ are
alwavs in image space: however, it may very well happen, for example, that
b und P may physically lie to the left of the system, although they are still

+ We defer until Section 3.4 the special case in which the ray r, emerges parallel to the axis.
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FiG. 1.5. An optical system with P” and F’ physically on the left of the system

in image space. Fig. 1.5 shows a system consisting of two components in
whick this occurs,

The distance P'F’ is the second or image-side focal length, denoted by £/,
and PF = f is the object-side focal length. These magnitudes take signs
according to the order of the letters in the definition in relation to the positive
z direction, so that in Fig. 1.4 /' would be negative and f* positive.

The four points F, F', P, P’, along the axis fix the properties of the ideal
optical system completely. We can use them in a construction to find the
position and size of the image of any object, as in Fig. 1.6 where the optical
system is represented merely by these four points and the principal planes.
Let the object be OO, and let the ray r, be drawn through O, parallel to the
axis to meet the first principal plane in P,; it must emerge through P; at the
same distance from the axis, and pass through F’. In the same way, the ray r,
from O, through F is drawn through P, and P;. The point O; in which the
image side segments of r; and r, meet must be the image of O,, and O’ must
therefore be on the perpendicular from Of to the axis. This construction will
be recognized as a simple generalization of the elementary construction for
image formation by a thin lens.

0, L

n

FiG. 1.6. Geometrical construction for conjugates

Figure 1.6 also yields simple formulae relating the positions and sizes of the
) objéc't and image. Let # and »’ be the object and image heights; these take
signs according to the y-axis in the coqrdinate system (Fig. 1.1), so that in
Fig. 1.6 5 is positive and r’ negative. Het FO = z, F'O’ = z, so that these
quantities specify the axial conjugate. positions; they are taken as directed
segments with signs according to th¢ *-axis, so that in Fig. 1.6 z is negative
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and z' is positive. From the similar triangles FOO, ard FPF, we have

n'in= —fiz (1.6)

and likewise from F'O’O; and F'P'P;,
n'in= -z (L.7)

Combining eqns (1.6) and (1.7), we have
‘ 2z’ = ff; (1.8)
this is known as a conjugate distance equation, since it relates z and z'; it is
generally called Newton’s conjugate distance equation. [zzac Newtgn gave it
for a single surface (“Opticks”, Book 1, Part 1, axiom 6, Dover 1952, based

on the 4th edition 1730).
At the same time, we have obtained important expressions for the magnifi-

cation m = n'/n in eqns (1.6) and’(1.7); these are generally written
z= —fim, ' = —mf. (1.9
It is also vseful to have a conjugate distance equation in terms of the dis-
tances of object and image from the respective principal planes. Let PO = /,
PO’ = I’, again with signs implied by the fact that PO is a directed segment;
thus / is negative and /' positive in Fig. 1.6. We have
l=z+f I'=z+f; (1.10)

if the values of z and z’ are substituted from eqn (1.9) and m is eliminated, we
obtain

v
—+==1, 1.11
- ro (1D
the required equation. We also have, analogous to eqn (1.9),
p
I=f(l ———), =7 - m) (1.12)
m
and so St
Iy .
= —— 1.13
m If ( ‘ )

The considerable difference in form between the two conjugate distance
equations, eqns (1.8) anc (1.11), is because in eqn (1.11) the conjugates are
referred to origins in object and image space which are themselves conjugates,
namely the two principal points, whereas the principal foci are not conjugates.
This brings to light a slight inconsistency in notation; primed and unprimed
letters normally refer to conjugates or to some other quantities, e.g. angles of
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incidence and refraction, which have the relationship “*before and after going
through the optical system or one surface of it”", The principal foci do not fit
into this scheme and they are therefore occasionally labelled F, and F,, but
F and F’ is the more usual notation. ’

A third useful pair of points on the axis can be defined, the nodal points N
and N’': these are such that a ray entering through N emerges from N’
parallel to its initial direction. We can find the positions of the nodal points
by starting with the usual skeleton system specified by F, F’, P, P" as in Fig.
1.7: we construct any ray r, through F, meeting the principal planes in P,

Fic. 1.7. Construction for the nodal points

and P; and meeting the image-side focal plane at F;; next we draw the ray r,
through F} in image space and make it parallel to the segment of r, in object
space. Since r, and r, meet at an image point Fj which is on the image-side
focal plane, they must come from an object point at infinity, i.e. they are
parallel in object space: thus, both segments of r, are parallel to the segment
of r, in object space and so r, must intersect the axis in the nodal points. It is
easily seen by similar triangles that

FN = /7, F'N' = f. (1.14)

The six points F, F', P, P’, N, N’, are sometimes called the cardinal points.
If either of the quadruples F, F', P, P', or F, F', N, N', is known the properties
of the system are determined completely, since the conjugate distance equa-
tion and the magnification formulae are known. The points can occur in any
order and relative positions on the optical axis, subject only to the restrictions
implied by eqn (1.14). .

The relation between axial object and image points given by egns (1.8) and
(1.11) is in effect a one-to-one correspondence between pairs of points on a
line, the optical axis; it is an involution, in the terminology of projective
geometry. Similarly, the transformation which expresses the image segment of
a ray in terms of the object segment is a one-to-one correspondence between
lines in the same three-dimensional space (a collineation) with axial symmetry.
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The more detailed theory of involutions and collineations is not important
in geometrical optics, but they are mentioned here to establish the point that
the most general one-to-one correspondences take this form: on the other
hand, it will be seen that in rea/ optical image formation the relationship be-
tween object and image entities is more complex. For example, more than one
axial “‘image point” may correspond to a single object point, on account of
spherical aberration, and a point which is common to three rays in object
space may not be common to the corresponding three rays in image space.
Thus real optical image formation is essentially more complicated than the
ideal case we have been discussing. '



2 Geometrical Optics

2.1 Rays and geometrical wavefronts

We obtained in Chapter 1 a simple model of image formation with axial
symmetry, and we pointed out there that this was based on assumptions about
optical systems which are only valid under certain restrictions. In this chapter _
and the next we explain these restrictions and develop further the theory of
ontical systems within them. In order to do this, we have to introduce a
further concept, the geometrical wavefront, in addition to the ray, already
used.

The concept of a geometrical wavefront appears in the work of Fermat
(1667), Malus (1808), Hamilton (1820-30) and others, as a surface of constant
optical path from the source or a surface orthogonal to the rays from a source
point. More recently the shape of the geometrical wavefronts has been used
to characterize the aberrations of an optical system directly, rather than re-
garding the ray patterns as fundamental; one of the earliest authors to do this
was G. Yvon (“Contréle des surfaces optiques”, Paris 1926). This usage of
the geometrical wavefronts provides a link with the physical concepts which
originated with C. Huygens (1690) and A. Fresnel (1866) and developed into
the Kirchhoff diffraction theory (1891). A very full treatment of the early
history of these topics is given by E. T. Whittaker (1951), “History of the
Theories of Aether and Electricity”, Vol. I, revised edition, Nelson, London.

To an adequate approximation, we can regard rays as the paths along
which the radiation energy travels; this breaks down near foci and near the
edges of shadows, owing to diffraction effects, but it is essential to geometrical
optics that these are ignored. Now, let a point source of light be placed in



