 Springer-Verlag
- World Publishing Corp '

E. J. Yannakoudakis and C. P. Cheng

Standard Relatlonal
and Network
Database Languages

With 20 Figures

Springer-Verlag
World Publishing Corp

wrs - - AT = W AT T = e vt

7

A %y

E. J. Yannakoudakis, BSc, PhD, CEng, FBCS
Postgraduate School of Computer Sciences, University of Bradford,
-Bradford, West Yorkshire BD7 1DP, UK

C. P. Cheng, BSc, MSc, PhD, MBCS o
Department of Mathematical Studies, Hong Kong Polytechnic,
Kowloon, Hong Kong

ISBN 3-54(_)—19537-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-19537-8 Springer-Verlag New York Berlin Heidelberg

British Library Cataloguing in Publication Data
Yannakoudakis, E.J., 1950 -

Standard relational and network database

languages.

1. Machine - readable files. Software

I Title . Cheng, C.P., 1947

005.74

ISBN 3-540-19537-8

. Library of Congress Cataloging-in-Publication Data
Yannakoudakis, E.J., 1950-
Standard relational and network database languages / E.J.
Yannakoudakis and C.P. Cheng.

p. om.
Bibliography: p.
Includes index.
ISBN 0-387-19537.8 (U.S.)
1. Data base management. 2. Programming languages (Electronic
computers) I. Cheng, C.P. II Title.
QA76.9.D3Y365 1988
. 005.74--dc 19 v 88-31118

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in other ways,
and storage in data banks. Duplication of this publication or parts thereof is only

permitted under the provisions of the German Copyright Law of September 9, 1965,

in its version of June 24, 1985, and a copyright fee must always be paid. Violations
fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988
) e
Reprinted by World Publishing Corporation, Beijing, 1990
for distribution and sale in The People’s Republic of China only
ISBN 7 -5062 - 0750 -8

e e R g S i aanad

—pE
b

-

Preface

For any type of software to become standard, whether a third genera-
tion language or an integrated project support environment (IPSE), it
must undergo a series of modifications and updates which are a direct
result of theoretical and empirical knowledge gained in the process.
The database approach to the design of general purpose inform-
ation systems has undergone a series of revisions during the last
twenty years which have established it as a winner in many different
spheres of information processing, including expert systems and real-
time control.

It is now widely recognised by academics and practitioners alike,
that the use of a database management system (DBMS) as the under-
lying software tool for the development of information/knowledge
based systems can lead to environments which are: (a) flexible, (b)
efficient, (c) user-friendly, (d) free from duplication, and (e) fully
controllable. .

The concept of a DBMS is now mature and has produced the
software necessary to design the actual database holding the data. The
database languages proposed recently by the International Organisa-
tion for Standardisation (ISO) are thorough enough for the design of
the necessary software compilers (i.¢ programs which translate the
high level commands into machine language for fast execution by the
computer hardware).

The ISO languages adopt two basic models of data and therefore
two different sets of commands: (a) the relational, implemented via
the relational database language (RDL), and (b) the network, imple-
mented via the network database language (NDL).

RDL is based on anIBM product called structured query language
(SQL), whereas NDL is an extension of the previous proposal for a-
simple network language by the CODASYL (Conference On DAta
SYstems and Languages) committee. So, the maturity of CODASYL
(originally proposed in 1971) coupled with the theoretical founda-
tions of the relational model make RDL and NDL very good candi-
dates for the design of database compilers. L

This book describes both RDL and NDL, details the syntax of their ,,
respective commands, and gives realistic examples to illustrate their .

vi Preface
use. In this sense, it is a textbook which will be of use to both students
and practitioners of the database technology. In summary, the book is
intended for the student taking courses (either at undergraduate or
postgraduate level) on computer science, the database administrator,
the database programmer who will use the commands described to
develop application programs, and finally the database analyst who
collects the enterprise data and proceeds to outline the logic of each
application for implementation with a database language.

The book is in three parts. Part I describes the database management
system as it should be, that is, the various facilities it should offer the
database administrator, the programmer and the general user. Part II
describes the ISO RDL:including the .schema and view definition
language, the module:Janguage, and the data manipulation language
(otherwise known as structured query language or SQL). Part HI
describes the ISO NDL including the commands to create the schema
and the subschema, the module language and the data manipulation
language.

Acknowledgements

The specification of the two ISO database languages has been a long
procedure involving hundreds of specialists from all over the world.
We extend our thanks to all the people involved in this important task,
particularly the members of the Database Committee of the British
Standards Institute (BSI) and the members of the X3H2 Technical
Committee on Databases of the American National Standards Insti-
tute (ANSI).

May 1988 : E J Yannakoudakis
C P Cheng

c

Contents
Part I. THE DATABASE ENVIRONMENTccoceocvvvvveernnnn. 1
1 Database Management Systems rerese e tstetsassrarseneseses 3
1.1 INroduction............ccovoveeemecevuiverereennnas ST TR 3
1.2 The Three Architectural Levelsccocemvriveiciimnnnerncrnnens 6
- 12,1 Logical SChema.......cccoecvvererreriesererresenrerensnreseeseenens 6
" 1.2.2 Logical Subschema...........cccevevemriecenrecnnnreeresnnenne 7
1.2.3 Storage Schema.......cccccovcerveenirenruensecincnneniienioreenas 7
1.3 Database Models...........ccoeverrevrerreienreneereesesesseraesresesessnens .
1.3.1 Hierarchic Modelcovcecernnerrercrecieneeenecenneans 8
1.3.2 Network Modelc..couririeveiveniineenrenecneneiesineenens 9
1.3.3 Relational Model...........ccceevcerirememrrrennreeirenereeenranans 9
1.4 Database Languagescoceverererierreveererienesiereeseessesiossanns 11
1.4.1 Data Definition Language (DDL).........cc.cccceenen... 11
1.42 Data Manipulation Language (DML) 11
1.4.3 Data Storage Definition Language (DSDL) 12
144 Query Language {QL)......c.cccovvnvvvcvrerirccrinrernen. 12
1.45 Query By Example (QBE)cccoveecveveerrriennnn. 12
1.4.6 Data Dictionaryccceoveveeinmnesencecee e 13
1.5 Standard Database Languages ... 14
1.5.1 NOAtiONS ...cccccvimerevreeninrreecessninrnersseessensssensessessnnes 14
1.5.2 Elementary TEMScccoceeccevrvmvienrvennnnesonnenns 15
Part II: STRUCTURED QUERY LANGUAGE (SQL) 19
2 Relational Database Language (RDL)............................ 21
2.1 INtrOdUCHIONccoeuenrireeireecreerirees s te e erensessresse e s e eaneanas 21
2.2 Elementary Terms in SQLccocovvieeineveennereeceeveee 22
3 Schema Definition in SQL............. eeerreeeraeerresaeeeraeeaaens .. 25
3.1 Schema Definition Languagecccocvvverenienvnrnrerennnns 25
3.2 Table Definitioncccveereeeceeiericiecr et v ens 26
3.3 View Definitionccccoevevveeveevenneccrrennn, erreereeseennaraeeresnnens 30

é?

LERE

Vi

3.3.1 Query SpeCifiCationcoevvereennerceirineisensinnsenies 30
3.3.2 With Check OpLioncccovueivmiineniinrerenieenecseecenne 37
3.3.3 Updatability of Viewed Tablesccccccennennens 38
3.4 Privilege Definitionccooovnicomeiecnenine e 40
4 Module Language in SQLccoovnmimrnniiiinenecne 43
4.1 Tasks of the Module Languagecouevvenneeecrnnsesennenne 43
4.2 Module Definition and Procedure Definition 43
4.3 Using an Embedded SQL Moduleccceveevenivuesivnrunnnee 47
4.4 Error Handling in Embedded SQLcooveirvenrurcnrrenncnn. 50
-§ Data Manipulation Language in SQL 51
5.1 Tasks of the Data Manipulation Languageccc.cccevuu.. 51
5.2 DML Statements and their Classification..............coeveuenes 51
5.2.1 Handling of Transactionsceceevmuiemvuecrnvursennn. 51
5.2.2 Location and Manipulation of ROWSc.ccue..... 53
5.2.3 Manipulation Of CUTSOTSceccvevevciecrurricvinnnesinns 61
Part I1I: NETWORK DATABASE LANGUAGE (NDL) 63
6 Network Database Language (NDL)..............ccccovrvanns 65
6.1 INLOAUCHIONovvvecrerrenrierecirie vt re et e e es e sassnees 65
6.2 General Structure 0f NDLcocoooovivmremereireerenercseensenes 65
6.2.1 Schema Definition Languagecccccovvvvecrvennennn 65
6.2.2 Subschema Definition Languageccccocoureevencees 66

6.2.3 Module Language and
Data Manipulation Languageccccceeeveecceccennnee 66
6.3 Remarks on NDL Terminologyccccoevvvieviecreerrceneenne 66
6.4 Elementary Terms in NDLccccoooiieininiccnnnensnnnnennns 67
7 Schema Definition in NDL tererieeereensaenreresanaaeas 71
7.1 Schema Definition Languagecccocevvreneermerrcreracnenens 71
7.2 Record Type Definitioncoccovvvervveriencciiiienrnsicnicnsaces 7
7.2.1 Record Uniqueness Clausec.cccovevvvencccncnncee. 72
7.2.2 Component TYPE.....cooecivveeimmrieirieinecceesenescsnaans 73
, 7.2.3 Record Check Clause.........oeecreerecrecccenccreensnssenns 74
7.3 Set Type Definitioncoceccrrveivrieresimnnccnenieeenreneerenseneaes 75
73,1 Owner Clause.....occeeeeeemeveeeereve et screesasseseenes 76
7.3.2 Order Clausecocoeeeveeuvenieiriieeeicrene et 76
7.3.3 Member Clausecccovveeveeincinccennninenresseeeecsenns 80
%4 Example Schema of Suppliers-and-Partscccecvrvvenens 85
8 Subschema Definition in NDLc.coooieinncnnnen 87

Contents
9 Module Language in NDLc.ccoccoviirivmncnnniccnnnne 91
9.1 Tasks of the Module Languagecoocecveeevevenveveenennne 91
9.2 Module Definition and Procedure Definition 91
9.3 Using an Embedded NDL Module 96
10 Data Manipulation in NDLcccooooevvinvvircererens 101
10.1 Tasks of the Data Manipulation Language 101
10.2 Sessions and Session State..........c..c.ccovevereeeiererrccresrseeennnns 102
10.2.1 CUTSOTSoivtcrncreeeiiriereniesrereeercas e s sse e e sseseeans 102
10.2.2 Temporary SCLScocvermevieerereereenreeeneesneereieesnens 103
10.2.3 Ready LiStccooivreiriecciiecerrener e 103
10.3 DML Statements and their Classification............c...c......... 104
10.3.1 Handling of Transactions..........c.cceccevveriecvereervennen. 104
10.3.2 Readying of Record Types for Processing 104
10.3.3 Location of Record Occurrences 105
10.3.4 Manipulation of Record Occurrences..................... 109
10.3.5 Connection Between Records
and Set OCCUITENCESccoeveverrerieeneerenrereiereeerenans 119
10.3.6 Nullifying CUTSOTScccevvrevrerereierreereeriresesenenens 121
10.3.7 Test for Database Key, Set and Set Membership .. 122
APPENAIXES ...ttt et eaes 125
Appendix A. Values, Search Conditions and Queries in SQL ... 125
Appendix B. Conditions in NDLcccoevevirieicncrereeennenn, 130
Appendix C. Auxiliary NDL Operationsc.ccc.eueveeerunnn. 132
Appendix D. An Example Database of Suppliers-and-Parts" 137
Appendix E. SQL KeYWOISoeceurverierererirerereneeereneenennns 139
Appendix F. NDL Keywordscco.oveueoomieeeceeeeeeeennn 140
REFETENCESceneeieiceeteeer ettt 141

Part 1
THE DATABASE ENVIRONMENT

1 Database Management Systems

1.1 Introduction

Computer-based information systems which make use of a database management
system (DBMS) evolve around the concepts of field, aggregate fields, record
type, and file.

(a) Field: The smallest unit of data which is meaningful and can represent a real-
world object (e.g SALARY, NAME, JOB-TITLE). A field can be atomic,
in which case it cannot be decomposed into other subfields without losing
semantic information; an example of a decomposition which may be mean-
ingless under certain applications is the integer and the decimal parts of field
SALARY. Orit can be decomposable into discrete components as is the case
with field NAME, which can be split into the subfields INITIALS and
SURNAME. Altemative terms for field are data item and attribute.

(b) Aggregate field: This is a named group of fields forming a discrete structure
which represents a real-world object (e.g ADDRESS, comprising the fields
STREET-NO, STREET-NAME, CITY and POST-CODE).

(€) Record type: A collection of fields forming an inter-record structure which
constitutes a logical entity. Anexample record type called STAFF is pre-
sented inFigure 1.1,comprising the fields NAME, ADDRESS, JOB-TITLE,
and the inter-link component which is used to associate each member of staff

A
STAFF DEPARTMENTS

r
NAME ! ADDRESS JOB-TiTLE Inter-link DEPARTMENT | LOCATION | [ntra-tink
A. Aristotle 7 Ornonia Street Mathematici Einstein

1 T Maths Building o~

D. Democritus | 12 Atomium Street Physicist N o Russell -

! Phys — e i Philosophy Building HD

; — \/ L
P. Plato ! 10 Acropotis Street | Phil - . Maxwell N

) ; — Physics Building s

; . i

S. Socrates f 2 Athens Street l Phitasopher o— 1

I

. Figure 1.1 Intra- and inter-record structures.

s

4 Standard Relational and Network Database Languages

with a department. The intra-link component of record type DEPARTMENT
is used to link departments which run joint courses (a maximum of one link
per record occurrence in both files STAFF and DEPARTMENT).

(d) File: A collection of occurrences under the same record type. The occur-
rence of a value under a field conforms with the specification of a single
domain (a pre-specified set of values which can be integer, real, character,
etc). Example files are presented in Figure 1.1, where a null link value
signifies the end of a chain (relationship).

Clearly, the use of linked structures which are implemented on some language
or other can involve one, two, or more links per record occurrence, offering
alternative access paths to cluster logically related records.

Ideally, a set of files should be available for a variety of users and applications
within an organisation, in such a way as to minimise redundancy (i.e duplicate
record/field occurrences), while maintaining: (a) access flexibility, (b) data
shareability, (c) data integrity, (d) security, and () performance and efficiency.

We are now in a position to define the terms DBMS and database
[Yannakoudakis, 1988] as follows:

A database is a collection of well-organised records within a commonly
available mass storage medium. It serves one or more applications in an
optimal fashion by allowing a common and controlled approach to adding,
modifying and retrieving sets of data. The DBMS is a suite of computer
programs which perform these operations in a standardised and fully
controllable manner.

Moreover, a DBMS offers the facility to define file control data (e.g number
of fields, type of each field, number of records, etc) separate from the logic of
applications, ensuring in effect data independence. The latter concept is of the
‘#tmost importance in a database environment and can imply:

(a) Data on the devices (e.g disks) can be manipulated independent of the
logic of the applications which access it. This is referred to as storage
independence. ’

(b) The view an application has of its data can be altered without affecting
the stored values. This is referred to as logical independence.

The set of very high level commands available to both users and programmers
alike, make some of the more complex conceptual operations very easy to
implement under the umbrella of a DBMS. (High level commands, beyond those
a\ ailable in current third generation programming languages (3GL) such as
Puscal, Ada, C, and:COBOL, are collectively referred to as fourth generation
laaguages (4GL).) "

Database Management S)gcms 5

The comprehensive environment offered by the DBMS for the speedy devel-
opment of applications regardless of the type of data they process (e.g text,
* pumeric, graphical, image), makes it a very attractive proposition to data
processing managers of today.

External

storage
devices

h 4

Storage
schema
N
2
Logical
schema
D 2
Subschema 1 Subschema 2
or or
view 1 view 2
N 3
Application Application
program 1 program 2
{(user work area) (user work area)
T N
l—— y y h 4
T ‘v__JJ T—
Y/ a— Y =N 7/ —= /[a— =\
User 1 Usern Usern + 1 Usern + 2

Figure 12 Major components of a database.

6 Standard Relational and Network Database Langusges

1.2 The Three Architectural Levels

With traditional file-based information systems data is stored under predefined
record types which can be linked at the intra- or inter-level, that is, within and
between files. The example file structure presented in Figure 1.1 illustrates both
intra- and inter-fields which have to be defined explicitly within 3GLs, but not
necessarily with a 4GL.

The definition of intra- and inter-links within 3GL programs is not particularly
difficult, provided the complete file(s) can be stored on primary memory. If the
files are too large to be held in the primary memory, then secondary memory (e.g
a disk) is also used. One way of utilising both primary and secondary storage is
to apply virtual storage techniques, joining in effect the available storage slots and
creating a ‘contiguous’ block.

If virtual memory cannot be utilised, either because the operating system
cannot handle it, or because the files are too large for the available virtua: storage,
then the definition of intra- and inter-links within 3GL programs can be problem-
atic. This is due to the fact that a generalised record storage and access mechanism
must be able to cope with two different types of pointers (addresses): (a) memory,
and (b) secondary storage addresses.

If both storage independence and logical independence are to be maintained by
the DBMS, then it must be able to cope with all possible manipulative operations
upon the stored data as well as upon the views users have of it. It should also be
able to cope with manipulative operations that ultimately result in the creation,
deletion and updating of intra- and inter-links.

Tothisend, it becames necessary to introduce a three-level architecture involv-
ing: (a) the schema, (b) the subschema, and (c) the storage schema, the totality of
which can maintain data independence while offering all the advantages we
discussed in Section 1.1. Figure 1.2 presents an outline of this architecture which
can be studied in connection with the following.

1.2.1 Logic»a!* Schema

This refers to the logical structure of the database and aims to define all the entities
(record types), and their relationships.

To understand what the source logical schema can possibly contain, compare
... it with that portion of a 3GL program which defines the record types in terms of
their name, fields, type of each field, length of each field (in bits, bytes, etc), and
the way they are linked together (either explicitly or implicitly). For example,
compare the logical schema with the DATA DIVISION of a COBOL program.
- So, the logical schema allows the definition of data independent of the logic
which manipulates it. Data formats, in general, are defined once and the fact that
the schema contains the entire set of fields makes it easier to detect synonyms,
homonyms and apparent definitional duplication. (Application programs which

Database Management Systems 7
do not operate on a database must, by definition, contain a complete set of
commands - possibly duplicated in other non-database programs - which describe
fully each and every field they use.)

Unless otherwise stated, when we refer to a ‘schema’ we will imply a logical
schema.

1.2.2 Logical Subschema

Given that the logical schema contains the definition of the entire database while
individual applications usually require only a subset of this, it becomes necessary
to specify the exact portion(s) of the logical schema which can be accessed by
users and programs. The logical structure and corresponding data (including
definitions and actual occurrences) of this subset is known as a logical sub-
schema. (We frequently refer to this as subschema.)

So, a subschema corresponds to the view of an application and its users. If the
DBMS forces each and every application program to invoke (reference) a
subschema before it can compile successfully, then the subschema will also be
introducing, to a certain extent, some form of data security since only the data
(record types, field, etc) included in the subschema can actually be processed by
the application program.

Clearly, in an organisation, there are as many subschemata (plural for sub-
schema) as there are applications, although a subschema may be common to two
or more different applications.

1.2.3 Storage Schema

After the logical schema has been defined the database designer considers the
manipulative operations implied by the applications and proceeds to map and
represent the logical schema on physical data structures which are referred to,
collectively, as the storage schema. (Alterative equivalent terms are internal
schema and physical schema.)

The storage schema comprises the definition of a set of integrated files,
including flexible access paths, indexes, buffer sizes, blocking, device areas, etc
which become ready (are initialised) to accept, retrieve, and generally maintain
the actual values of logical schema fields.

When the database is first set up usage frequency statistics may not always be-
available, unless the enterprise is converting from a file-based system to a DBMS
and past statistical data is available. So, the only sure way to proceed with the
design of the storage schema is in an incremental and iterative manner, by
collecting statistics on the usage of fields, access paths (links), etc, and subse-
quently using this information in order to tune the storage structures which
ultimately affect the performance of the database.

8 Standard Relational and Network Database Languages

1.3 Database Models

It is the type of data model and underlying data structures, which are supported
by a DBMS, that will ultimately determine the viability and flexibility of -
accessing the various attributes of a given organisation. The types of data
structures supported will also dictate the features of the data storage description
language itself.

Before the database designer adopts a model or a data structure, it becomes
necessary to understand data at a very much higher level - the conceptual - which
is independent of logical and storage schemata. The conceptual model of an
organisation is established following detailed data analyses and functional
analyses, application by application: After the conceptual model has been
established, the logical model can be désigned by utilising only the information
contained within the conceptual miodel. -

In this sense, a data model represents and reflects accurately the relationships
that exist among a set of record types, data items or fields. There are three major
types of models where record types and their relationships may be defined as far
as the logical schema is concerned {Yanmakoudakis, 1988]:

*.(a) Hierarchic (or tree)
(b) Network '
(¢) Relational:

Each of these corresponds to a différét approach to viewing an integrated set
of record types at the logical schema lével, irrespective of any underlying data
structures at the storage schema level. - fpa

Under the hierarchic model each record occurrence has no more than one
‘parent’ record occurrence. Under the network model a record occurrence may

have more than one ‘parent’ record occurrence associated with it. Under the - '

relational model the presence of common attributes (keys) among recond types
forms the basis of binding record types together; here, the relationships are
implicit rather than explicit as is the,gase with both hierarchic and network
models. (The models and their corresponding languages we discuss in this book
are the relational and the network.) . - .4 3

1.3.1 Hierarchic Model

This model can only handle one-to-one and one-to-many relationships (e.g one
department many employees, many courses many departments: see Figure 1.1).
The relationship many-to-one is not allowed in a hierarchy. -

Generally, an element in a hierarchy can be thought of as a distinct record type
which may ‘own’ one or more other distinct record types (the members). The
owner and the members then form what is frequently referred to as a set type.

The hierarchic model binds record types together so that occurrences under a

Databasc Management Systems 9
given level can be used to retrieve others directly below it. Ifa recor'd occurrence
is not directly below another, then it cannot be accessed directly; if direct retrieval
is necessary then the occurrence is frequently duplicated under the ‘parent’
occurrence.

1.3.2 Network Model

This type of model allows more than one owner (parent) per record type. In other
words, a record occurrence can be owned by two or more other record occur-
rences. This helps to reduce the redundancy introduced by the hierarchic model,
by defining multiple incoming pointers to each record occurrence.

Although the network model allows a variable number of incoming pointers to
arecord occurrence, it is customary, fn practice, to use the same number of ‘links’
per record occurrence, since variable length records are difficult to represent at
the storage schema (i.e physically). While the structure is utilised and where extra
links become necessary, then atag within each occurrence may be used to indicate
the presénce of an overflow area which holds the rest of the links. The overflow
area itself can have a fixed number of links per occurrence.

Networks sometimes give rise to loops or cycles where an occurrence appears
to be linked to itself. This category of link occurs when a record type is defined
as member and owner of the same single record type set.

If the DBMS cannot support a network model of data directly (i.c many-to-
many relationships), then the network can be split into a number of one-to-many
relationiships which form an equivalent logical model. This becomes in effect a
hierarchic model with owners and members which may be duplicated.

1.3.3 Relational Model

The relational model uses keys (primary and secondary) to form relationships
among record types which are referred to as relations. In other words, the relation-
ships are established through keys which are common between relations; the
relationships are implicit and independent of physical implementation at the
internal schema.

Each relation has associated with it a table which can be permanent and is
otherwise referred to as a base table. The occurrences (rows) in a table are known
as tuples. A virtual table is derived (synthesised) upon invocation of the
corresponding virtual relation commonly known as a view.

The synthesis of views from one or more base tables can lead to certain
difficulties when it comes to updating, inserting, or deleting occurrences in the
virtual table. For example, given the following relations, based on the informa-
tion presented in Figure 1.1

STAFF(KEY, NAME, ADDRESS, JOB_TITLE, DEPT)
DEPARTMENT (DEPT_NAME, LOCATION)

