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B PREFACE

I have tried to present a unified and deductive introduction to that part of
theoretical physics which is becoming known as ligand-field theory. The field of
application of this theory is rapidly spreading at the present time and, because
of this, it appears more suitable and more helpful to concentrate upon the
methods of the theory rather than the details of applications. Hence, although
a oconsiderable survey of experimental measurements appears in ohs. 1012, it is
by no means exhaustive. The exclusion of almost all reference to rare-earth or
actinide ions and to chemical applications—for which the reader is referred to -
L. E. Orgel’s book, Transition-metal Chemistry (London : Methuen,1960)—stems
from similar considerations. .

There are a number of essential prerequisites to a proper understanding of the
theory of the physical properties of ions in compounds. Chs. 1-8, together with
§§8.4, 8.6 and 8.7, include those things I deem necessary. Three seem to me
' especially important: a detailed understanding of the selection rules and other
numerical restrictions upon matrix elements implied by the classification of the
behaviour of the constituent operators and functions under the elements of
symmetry groups; the use of Dirac’s equation to derive the spin-drbit coupling
and nuclear hyperfine energy; the complex of ideas which has as particular
manifestations Kramers’s theorem on degeneracy, Wigner’s operation of time
reversal, and Frobenius and Sohur’s discussion of the relation between an ‘
irreducible representation and its complex conjugate. These ma.tters play a
central role in my presentation of the theory.

When deciding the contents of the book it soon became apparent to me that
~ there were many important propositions which workers in the field regarded as
‘obvious’ and used in order to streamline caloulations, but which had never
been formally proved. A particular example is the relation between ‘holes’
and ‘particles’. Following the work of Shortley and Racah, it is to be expected
that the matrix elements of quantities of interest between hole states are simply
related to those between particle states in ligand-field configurations as they are
in atomic configurations. But t0 use this relationship with confidence in cal-
culations it is necessary to know and prove its precise form, including the
specification of relative phases. In this case and otherwise I have tried to present
and prove results in the forms which are actually needed in caloulations.

With ‘a book of this size in a fast-expanding field it is inevitable that the.
contents should represent in the main the author’s position at a time past.
Most of the book was written in 1958 and it was submitted in the spring of 1969
but I have referred to la.ter work when it has cast a genuinely new light on some
topic.
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'Finally, it is a pleasure to acknowledge my benefit from many.discussions on
theoretical physics and theoretical chemistry with Professor H. C. Longuet-
Higgins and members of his departmont, especially with L. E. Orgel on the
theory of transition-metal ions. I am also indebted to C. K. Jorgensen for his
kindnesg in preparing Table 11.3 for me and to him and C. E, Schiffer for the
. data in Appendix A 40,

J.8. GRIFFITH
June 1960
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CHAPTER 1

INTRODTjCTION

1.1. Transition metals and their compounds

The transition metals are those which have partly filled shells of d-electrons
in some, at least, of their compounds. In a similar way, the rare-earth metals
have partly filled shells of f-electrons. Among the stable elements there are
three series of transition metals and one of rare-earth metals. We are concerned
in this book with the three stable series of transition metals. In orderof increasing

~ atomic number, they are called the first, second and third transition series. (See

Appendix 1 for an enumeration of the elements in the three series.) The theory
we shall develop is applicable, with minor modifications, to rare-earth metal
compounds and to those compounds of the unstable elements at the end of
the periodio table which contain partly filled shells. _

Two extreme classes of transition-metal compound are conveniently -dis-
tinguished—the metallic and the non-metallic. The former class includes the
alloys, interstitial hydrides, borides, carbides and, stretching the use of the word -
compound slightly, the metals themselves. Typical members of the latter class
are inorganic salts such as copper sulphate or potassium ferricyanide. From a

- theoretical standpoint the essential distinction between the two classes is that

in the latter the d-electrons of the partly filled shells may be assigned individually
to particular metal atoms. Each metal atom (orion) has its own set of d-electrons
localized near it and having little interaction with the sets belonging to neigh-
bouring metal atoms.. In & metallic compound the d-electrons are owned collec-
tively by all the metal atoms and they cannot be separated into nearly non-
interacting sets.

" In this book we are concerned only with the non-metallic type of compound.
The implied division of the electrons into localized groups is strictly never more
than an approximation to the truth but it turns out to be a good approximation
for a wide range of compounds which may, therefore, be called non-metallic.

It is usually possible to decide unambiguously how many d-electrons are
localized near a particular transition-metal atom in a compound. There ‘are
transition-metal compounds, KMnO, or CrO,(l, are examples, in which there
are no d-electrons. Our theory says little about such compounds aithough it can

- compare them with similar compounds which do contain d-electrons.

Finally, what is & d-electron in an atom, an ion or a compound? This will

. emerge slowly as we pass through the book. The main general discussion of the’

meaning of a d-electron in a compound isin ch. 7 and there the sense in which we

. may say that KMnO, contains no d-electrons will become apparent.
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1.2, Stereochemistry

X-ray crystallographic determinations of the structures of a great number of
transition-metal compounds have been made. A survey of all the data available
on the class of compounds in which we are interested shows that the most common
arrangement of nearest neighbours about the metal ion is that of a more or less
distorted octahedron. Thus the anhydrous fluorides of Mn**, Fe*+, Co** and
Ni** erystallize in the rutile structire, each metal atom being surrounded by an
almost regular octabedron of fluoride ions (as shown in Fig. 12.8). The hydrated
ions Mn(H,0)¢t*, Fe(H,0)st*, Co(H;0)s™*, Ni(H,0)s** in crystals all have
almost regular octahedral symmetry. An jon such as Co(NH,),CI** has the
five ammonia molecules at the vertices of an octahedron and the chloride ion
at & slightly greater distance from the metal atom along the line joining the
latter to the sixth vertex., '

Two other important types of stereochemical arrangement must be mentioned. -

Tetrahedral coordination of the metal ion is fairly common, particularly among
the Co™ compounds. Some examples are CoCl, ™, ReCl,” and the blue form of
CoCly(NH,);. Planar complexes in which the metal is surrounded by a square
of four molecules or jons are very common for metal ions with eight d-electrons
and occur also for those with seven and nine. The Cu** ion with nine d-electrons
exhibits the whole range of stereochemistries from slightly distorted octahedral
to planar. Sometimes there are four close neighbours of the Cut™ ion in a plane
and two more distant ones completing a distorted octahedron. Other stereo-
chemical arrangements are found, but not nearly as commonly as the three types
already mentioned. : :
. The more distant enviranment of the metal ion, namely the environment of
the central octahedral, tetrahedral or planar group, is extremely variable.
Fortunately groups other than nearest neighbours are relatively unimportant in
determining at least the coarse chemical and physical properties of the ion.
Consequently we can often neglect all but the nearest neighbours of the metal
ion. These latter we shall usually refer to as the ligands.

Many of our detailed speotroscopio and magnetic data refer to ions in solution.
The few detailed comparisons which can be made between the properties of ions
in solids of known structure and those of the corresponding ions in solution show
that the inner coordination-group is usually maintained almost unchanged in
solution. For example, the optical spectra of hydrated transition-metal ions in
aqueous solution are almost identical with those of the same hydrated ions in
orystalline solids. It will appear in due course that this usually implies that the
stereochemistry is the same in the two situstions. The physicist, however, must
bewarned that solutions of transition-metal compoundsoftencontain unexpected
molecular species. In general, solutions.of transition-metal ions may contain
equilibrium mixtures of different complexes, that is, the metal may- occur in
association with different sets of ligands. Nevertheless, many different types of
evidence show that each species maintains its own particular stereochemistry
with regard to the orientation of nearest neighbours about the metal jon.
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In textbooks dealing with transition-metal chemistry it is usual to distinguish
between compounds and complex ions. This particular type of classifioation, -
while it may be useful in certain contexts, tends to hide the important features
common to both classes. In general, the electronic properties of a metal ion will
be determined by its nearest neighbours, and it makes little difference whether -
these are part of a binary solid or of a discrete complex ion. In fact it is even .
true that the optical absorption spectrum of the ‘compound’ MnF, is very -
similar to that of the ‘complex ion’ Mn(H,0),** in aqueous solution.

 1.3. The valencies of the transition metals

The concept of valenoy as used by the chemist in connexion with transition-
metal compounds will be regarded as a purely formal one. The molecular species
under consideration is supposed to be made up of metal ions and other moleoules
or ions. To each of the latter a certain characteristic charge is assigned, usually
that necessary to give it a closed shell, e.g. zero for a molecule such as water or
amihonia, minus one for a halide or nitrafe ion, minus two for an oxide, sulphide.
or sulphate ion, and 20 on. (See ch. 7 for a discussion of closed shells.) The charge
which must then be assigned to the metal ion in order to give the correct charge

for the molecular species is termed its valency. To take an example, we consider
CrO,", which is said to be a compound of hexavalent chromium, sinoe a chirge
of -+ 6 on the chromium, together with four charges of — 2 on the oxygens, add
up to give a charge of — 2 on the species CrO,. It must be emphasized that there
is no implication that anything like a Cr*® ion is present in the CrO,~ anion.
The term ‘valency’ is also used in many other, usually imprecisely defined, ways.
For the purposes of the present book the formal definition given above is almost |
always unambiguous and then has the advantige that it involves no precon:
ceptions about the electronio structure of particular transition-metal compounds.
In other contexts a different definition might be more convenient. : :

‘Tt is next interesting to ask whether there is ever 'a direct correspondence
between the formal valency and the electronic distribution in the region near the .
metal ion, Since the second and subsequent ionization potentials of the metals
are larger than the ionization potential of any other molecule or ion in the _

_ environment, it is clear that the consequent electron-attracting tendency of the
metal ions in high valencies must be neutralized in one way or another by their
- nearest neighbours. The manner of this neutralization will appear in ch. 7; for
the present we note that as the formal valenoy of the metal ion inereases, the
- degreeof its correspondence with the actual eleotronio structure usually decreases. o
. It is for this reason that the compounds disoussed in this book are nearly all
formally of low valency. - o : :
The valencies of a metal ion which are stable will of course depend on the
nature of the ligands.” Manganese, for example, forms hexa- and heptavalent
compounds with oxygen, MnO, ™, MnO,"; di- and trivalent compounds with
water; and zerovalent compounds with carbon monoxide. A full discussion of
the stabilization of valensies by different ligands would take us too farinto general -

. 1.2
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chemistry. The rea.der is referred to works on inorganic chemistry for further
details.

The valencies exhibited by different metals in the presence of the same ligand
also depend on a number of factors. One-of these is very simple and of great
importance. The ease of oxidation from the nth to the n + 1th valency is olosely
related to the n+ 1th ionization potential, particularly for the lower valencies
. of the transition metals. The observed ionization potentials for the three lowest
valencies of the transition metals are given in Appendix 1.

In the first transition series only copper can exist as an aqueous monovalent
ion. This is presumably to be correlated with the high second ionization potential
of copper, which is more than 2 eV Iarger then that of any other of these elements.
In a similar way the trivalent compounds of Se, Ti, V, Cr, Mn, Fe, Co are obtained
more easily than those of Ni, Cu, Zn; that is, the metals with lower third ioniza-
tion potentials are more easily obtained in the trivalent state. Many other ex-
amples of this sort could be given, but it must also be emphasized that a number
of other factors are involved which depend ‘on the interaction of the metal with
its environment. The chemist describes this situation by saying that the oxidation-
reduction potential of a metal ion depends on the nature of the ligands.

1.4. Theories of chemical bonding

A few remarks on the more important contemporary theories of the electronic
struocture of transition-metal compounds may help to clarify our approach to
the subjeot. -
" The simplest possible picture of the electronic structure of transition-metal

- compounds is the purely ionic one. Here the formal valencies of the different

ions in the structure are interpreted literally to imply the presence of the corre-
sponding ions. This theory, which was adequate for the description of the stoich-
iometric properties of most compounds, has been more or less abandoned by
chemists, since it is clearly unable to account for many experimental observations
_ and is, in any case, quite unrealistic in the light of our present knowledge of the
ionization potentials and electron affinities of atoms, ions and molecules.

The most influential ‘chemical’ theory of transition-metal structure has
undoubtedly been the valence-bond theory, as developed by Pauling. Here an
attempt is made to distinguish between ‘icnic’ compounds which are held
together by electrostatic forces, muoch as in alkali halide crystals, and ‘ covalent’
compounds which are held together by directed bonds. Conceptually this theory
has proved so attractive to chemists that it has been the basis of most recent
chemical thinking on the subject. Despite its usefulness in this direction it has
not proved fruitful in the field of quantitative calculation. It now seems certain
that some of the postulates of the scheme require revision, but its simplicity
guarantees it a central importance in qualitative chemlca.l discussions of the
theory of valency.

While chemists were developing the valence-bond theory, the ionic theory was
being adapted for use in a more quantitative way. Largely through the influence
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of Bethe and Van Vleck, a detailed understanding of the magnetic properties
of divalent and trivalent ions in certain types of environment was built up. This
theory was restricted in its range of application since failure to include ‘ chemical’
interactions excluded most metal compounds of high valency and also many
others. Within its range, by applying perturbation theory to the quantum
mechanical deseription of the free ions, it achieved many notable. quantitative
~ successes. For reasons which it is now difficult to understand no chemical

applications of the theory were made before 1950. In other fields of theoretical
chemistry the molecular-orbital method had, by 19560, achieved a central posi-
tion. It was natural, therefore, that when certain experimental observations
demanded an explanation in terms of electron-sharing between atoms the

electrostatic theory was extended in the direction suggested by the molecular-

orbital method. The theory which has resulted is a hybrid which still depends
heavily on the simple eleotrostatic theory, but which can be justified as an
approximation to a more complete molecular-orbital treatment.

el
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CHAPTER 2

ANGULAR MOMENTUM AND
RELATED MATTERS

2.1. The Hamiltonian for an atemic system

In order o understand the behaviour of & metal ion in the environment im-
posed upon it in & compound, it is necessary first to understand the electronic
structure of free atoms and ions. This is obvious for compounds in which one
believes that the environment represents a rather small disturbance of this
electronic structure. However, it is also very useful to be able to refer to the
theory of the structure of Tree atoms even when the disturbance is large. This is
especially true of the sort of compounds that we consider in this book, namely
those in which unpaired metal electrons are localized on or at least near to their
parent metal ions. In this chapter and the next three, therefore, I describe those

.features of the theory of atomic structure which ars most relevant to our later

treatment of metal compounds. I start from the beginning, but it is rather
desirable that the reader should possess already a little knowledge of quantum
mechanics: §§ 1--22, 27, 42 and 43 of Professor Dirac’s book Quantum Mechanies

probably cover all that is really necessary.? I use the bra and ket notation almost

exolusively throughout the book because I feel that, as with vectors in classical
mechanios, it makes the intuitive significance of equations and results much
easier to grasp.? ,

An atom or jon consists of & relatively massive positively charged nucleus
together with a number of electrons. The electrons are held near the nucleus by
their electrostatic attraction to the latter and to some extent apart from esch
other by their mutual electrostatio repulsions. Because of its relatively large
mass it is a good approximation to regard the nucleus as being at rest. This
means, then, that we have a ¢classical Hamiitonian

#< 3 (p-0)+ 5 2, (1)

PP ! 2m =" T k<A A )
for the system. In (2.1) p, is the momentum vector of the xth electron and r,
its distance from the nucleus, 7 the mass of the electron, — ¢ its charge, -+ Ze the
charge on the nucleus and r,, the distance from the xth to the Ath electron. There
are n electrons and the whole system has a charge (% ~n)e, so for a neutral atom
n = Z and for a positive ion n < Z.

1 Dirac (1847), §342 and 43 are perturbation theory. A summary of parts of this, tagether with
some further developments, is in Appendix 3.
? I quite often use single syrabols to stand for kets or bras and may write, for example, yr = [#P.

1 do pot apologize for this apparent confusion of types because it does not oceur ig places where
it conld lead to difficulty.
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~ Naturally (2.1) is not a complete and accuratq Hamiltonian for the system.

The effect of regarding the nucleus as being at rest is truly a small one and the
* whole part of it which is relevant to us can be taken into account by interpreting

m in (2.1) as the reduced mass uM [(x + M), where x4 is the true mass of an electron
and M the mass of the nucleus. This result is obtained by referring all distances
in. ﬂ‘q more exact theory to the centre of mass of the system whereupon one
obtains (2.1) to an approximation quite sufficient for our purposes. There are
other ways in which (2.1) is incomplete which will prove important in our theory:
The electron has a magnetlo moment and so, quite often, does the nucleus. Thia
introduces extra terms into (2.1) which represent magnetic interactions between
the various particles of the system. These we consider in ch. 5, but until the end
of ch. 4 we derive only the consequences of the Hamiltonian (2.1). The main
reason for this particular division of labour is that we find later that the effeet
“of the environment of a metal ion is usually larger, in terms of the energies
associated with it, than most or all of the ma.gnetlc interactions but usually & .
little smaller than the electrostatic interactions arising from (2.1). As a con-
sequence of this, the electronic structure of atoms or ions having the Hamiltonian
- (2.1) is specially important and so we now pass on to consider this.

In quantum theory the classical Hamiltonian 5 is taken over directly, but
P, and r, are now regarded as operators, the components of which do not all
commute. If we write ¢ and ¢’ for typical, but not necessarily different, co-
ordinates 2, y or z then :
.pxqu\q' = p:\q’.prq for all K, A, ‘

9 = 9ads forall «,A,} o (2.2)

9xPay pkq’Qx = imqq‘"xb o

where the Kronecker delta symbol i is defined by the equations d,, =0, unless

a = b when 8x = 1. In (2.2) p,, represents the ¢ component of p, and similarly

for the others. Any pair of components of the same or different momenta commute

with each other and the corresponding statement is true for coordinates. The

only non-commuting pairs of components are those referring to a coordinate of

& single particle and its conjugate momentum. :
- Sohrédinger’s form for the equations of motion is

d
u’ia]X) = | X), - (2.3)
. . ’ i
and, if we express the ket | X) in terms of the coordinates of the eléctrons and the
time, the p, may be equated to differential operators E

A

: o {9 2 @
p“""ﬁV’“’ﬁ(i-"é‘y‘;’a)' (2.4)

It is 1mmedmte that these p, satisfy (2.2). Equation (2.3) then becomes Schri-
dmger 8 wave-equation for the system

H(—ihV,, 1) g(r,, t))—iﬁ ; P(Te t)) - - (2.8)
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" 'The Hamiltonian 5% represents the total energy of the system! Since it does

not involve the time explicitly we may find stationary sta.tes which are eigen-
'funotxons of #. In fact we write ,

% | : o | BT, 2)) = e~ BVE Y (r, ) | (2.6)
" and ' ‘ HY) = By, o (2.7)

where ¥ is independent of time and ¢ then satisfies (2.5). We shall be interested
- - in these stationary states for atomic systems and when discussing them shall -
{"* . sometimes drop the ket symbols i equations such as (2.7). We always retain the
o .-~ symbols to express average values and for matrix elements between different
ol states, e.g. (/| p2 |y) is the average value of the square of the momentum of the
' «xthelectron for the state ¥ and (Y| z, |, is the matrix element of z, between
“droo o0 thestates ¥, and ¥,. We now have the wave equation

n Ze2 n ’
[£(-5av-2)+ & Sv = v, (2.8)
xm1 LM &< Tir

- oorresponding to (2.1).
' It is an experimental fact that electrons obey Fermi-Dirac statistics and this
appears in the theory as an assertion that electronic systems can only be repre-
sented by solutions of (2.8) which are fully antisymmetric with respeoct to inter-
.. ohange of electrons. We shall sce precisely what this meansin §2.6. It is also an
experimental fact that an electron has s magnetic moment and that there are
two independent internal states {or the electron, called states of spin, which are -
associated with different orientations of the magnetic moment. The extra terms
in the Hamiltonian due to the magnetic moment of the electron are usually
small and as already remarked are not considered until ch. 5.

Because of the requirement of Fermi-Dirac statistics it turns out that the
existence of two independent spin states for the electron actually has a very large
~ influence upon the energy of many-electron systems even though the terms in the
Hamiltonian which involve the gpin are small. In § 2.4 we shall consider the
algebraic techniques for dealing with the spin and then discuss its influence on
the electronio energy. First, however, we must discuss the properties of orbital
angular momentum.

2.2. Orbital angular momentum

, In classical mechanics there are always two important constants of the motion

- for an isolated systern. The first is the total energy and we recognize this in
quantum theory by taking it for our Hamiltonian. The second is the total angular
momentum. This is also important in quantum theory and, as we shall See
shortly, it coamutes with the Hamiltonian (2.1) and &o can still be taken ad a
constant of the motion. Because of this it is very useful to examine its prdperties,
eigefistates and eigenvalues in considerable detail. We shall find actualiy that if
we use (2.1) there are two kinds of angular momentuni which are constants of
.. the motion in guantum theory. The firsh corresponds most closely tb the total
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angular momentum in classical mechanics. We now call it the total orbital angular
momentum to distinguish it from the second kind, the spin angular momentum.
Then we shall find later that if magnetic interactions between the particles are
included, only the surn of the orbital and spin momentam is & constant of the
motion. This, in quanturn mechauics, is called the total angular momentum.
The third common constant of the motion for & classical system is the total
linear momentum. This is not relevant for us because our system is not really
isolated; it is congregated round the fixed nucleus. In the words of Weyl, we
have transformed space from a homogeneous spece to a centred space. The centre
is the pucleus and so long as we regard it as a fixed point charge we have full
rotational symmetry about it but no longer translational symmetry. This is
why angular but not linear momentum is useful as a tool in the analysis of
structure.

Just as in the classical theory, then, the orbital angular momentum of 2
particle about the origin is defined as the vector i =- rap. Using the com-
mutation relations (2.2) we find readily that

TAD = —PAT, : (2.9}
as in the classical theory. but that
Lol — L1, = ik, (2.10)

and mmllarlv for cyclic permutations of x, ¥, z. The three relations of the type
{2.10) may be abbreviated in vector notation to the equivalent single equation
1Al = ikl showing that in gnantum theory, unlike the classical theory, the
vector product of o vector with itself is not necessarily zero. -

It is convenient to introduce a notation for the commutator of two gnantities
a and b, of which one may be a vector:

fa,b] = ab - ba. (2.11)

The reader should note that we are following here the normal methematical
usage rather than the Toiseon bracket notation of Diraz. The two notations
diter, of course, only by a factor #., A number of useful relations follow imraedi-
~ately from (2.11), We huve the anticommutation relations for the commutator:
[3, a] = — (e, b] and [a, (l] = ),

and the distributive lawe

(2,6+-¢] == [a,b]+[a,c],

to-+c,a] = [b,a] +{c,ai.
Tizen thers is also a pair of relaticnships which are rather like the ruie for ditfer-
- eatiating a product

ab, cl = a{b, ¢l +{a.c}b,) '

le,ab] == afc, L]+ e, alb.

We sball refer to all these celations colloctively as (2.12), In the new notation,
C4230) hecones L L] = ol



