' COMPUTER METHODS
IN
OPERATIONS RESEARCH

ARNE THESEN

COMPUTER METHODS
IN
OPERATIONS RESEARCH

,‘.
ARNE THESEN

DEPARTMENT OF INDUSTRIAL ENGINEERING
UNIVERSIPFORdi{JSCONSIN
WADISHN, [WISCONGIN

.

ACADEMIC PRESS New York San Francisco London 1978 °
A‘Subnkiiafy of Harcourt Brace Jovanovich, Publishers

-

CoPYRIGHT © 1978, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED. ;
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER,

" ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition publisnea oy

ACADEMIC PRESS, INC.. (LONDON) LTD.
24/28 Oval Road, London Nw1

Library of Congress Cataloging in Publication Data

Thesen, Arne.
Computer methods in operations research.

(Operations research and industrial engmeermg
series)

\. Includes bibliographies.

1. Operations research—~Data processing.
I. Title. -

T57.6.T47 001.4'24'02854 77-74063
ISBN 0-12-686150-1

PRINTED IN THE UNITED STATES OF AMERICA

PREFACE

This text is designed to fill the growing gap between the computational
requirements emerging in modern industrial engineering and operations
research (IE/OR) applications and the algorithmic and computational
methods commonly available to the IE/OR student and practitioner.

As an illustration of this gap, consider the conventional labeling or
“scratch pad” approaches to shortest or longest (i.e., critical path method)
path network problems discussed in introductory OR texts. These techniques
work well for hand calculation where a visual representation of the network
is available. They also work in computer programs designed to.handle small
problems where manual procedures can be mimicked in an exact manner.
However, substantial additional considerations enter when programs are to
be written that handl¢ larger than illustrative problems. , :

These considerations include issues such as: (1) What errors are likely to
occur in the input phase? How can they be avoided, detected, or corrected?
(2) What are the different ways available to represent the network in the
computer? (3) What is the most efficient algorithm for the problem at hand?
(4) What errors are likely to occur during the analysis phase? How can they
be avoided or.detected and possibly corrected? (5) How should. the per-
formance of the resulting program- be evaluated? While these issues are

ix

x : ’ PREFACE

rightfully ignored both in introductory level computer programming courses
and in introductory level OR courses, they are important issues of substantial
economic significance that the practicing systems analyst cannot afford to
ignore.

The academic level of a course based on this book would be suitable for
a senior or first-year graduate student in enginegring or business. Prerequisites
for this course would include a course in FORTRAN programming and a
course in deterministic OR models (including linear programming (LP) and
network analysis). The course itself could be useful as a corequisite for more
advanced courses in graph theory or network analysis as well as a useful
prerequisite for a thorough course in simulation techniques.

In Chapter T we provide a review of some of the basic principles that make
a software development effort successful. Throughout this chapter the need to
keep things simple and understandable is stressed. The computer is a servant,
not a master. The development.of a code that is not used because the potential
user does not believe or understand it is a wasted effort. Considerable
attention is also devoted in Chapter I to the subject of software evaluation.

Chapters II and 111 cover the basic principles of list processing, searching,
and sorting. Such subjects are normally included in second or third level
computer science courses. However, these courses are usually too specialized
and have too many prerequisites to be available to the anticipated audience
of this textbook.

In Chapter IV the concept of networks is introduced and several matrix
and list oriented methods for representing networks in the computer are
discussed. Techniques for spanning all hodes and/or links in a network are
then developed.

The critical path method (CPM) is discussed in Chapter V. We show how
to develop efficient CPM algorithms. We also investigate the problem of
designing CPM packages as computer-based management tools. Guidelines
are developed for handling the detection of input errors and for the de51gn
of reports. The needs of the user (rather than the computer or the analyst)
are the major concern here.

Chapter VI presents more complex programs and algorithms to handle
scheduling .of activities under precedence and resource restrictions. To
illustrate these approaches the resource-constrained scheduling problem is
formulated both in'an exact (using integer programming) and in- a heuristic -
manner. The difficulties of implementing these approaches in a computer are.
discussed. Finally, a complete commercial scheduling package for managerial
use is reviewed in detail. This chapter also serves as a vehicle for an ifi-depth
discussion of many aspects of program evaluation. B : .

The #iesign of algorithms for the solution of large lmeaf programmmg
problems is discussed in Chapter VII. A simple review is given of the formu-

PREFACE ' xi

latlon and solution of LP problems using the revised simplex method. This
discussion is followed by a‘review of how various algorithmic aspects, such
as the handling of sparse matrices, pricing, and the updating of the inverse,
are implemented so that the resulting usage of computer resources is mini-
mized. This chapter also contains a brief overview of available mathematical
programming systems, and the mathematical programming systems data
input format is reviewed in detail. Finally, the chapter contains a discussion
of the concepts of generalized upper bounds as implemented in the MPSIII
system designed by Management Science Systems, Inc. (Permission to
reprint their discussion on this subject is greatly appreciated.)

The application of list processing concepts to the development of branch
and bound algorithms for solution of combinatorial optimization problems
is discussed in Chapter VIII. Design considerations for branch and bound
algorithms are given. An illustration is presénted to demonstrate how sorting
and list processing can be used as the two basic techniques to solve multi-
dimensional knapsack problems efficiently.

The design of pseudorandom number generators is discussed in Chapter
IX. We first show how uniformly distributed pseudorandom numbers can be
generated, using multiplicative congruential methods. Values of appropriate
constants for several different computers are given. This discussion is followed
by a review of four different tests for checking the acceptability of pseudo-
random number generators. Finally, the generation of random deviates from
the exponential, Erlang, normal, chi-square, and Poisson distributions' is
discussed.

Chapters X and XI are concerned with discrete event simulation studles
The discussion of fundamental modeling and programming aspects in.
Chapter X is centered around a simple data structure and a few rudimentary
subroutines designed to carry out the essential steps in any discrete, event
simulation program. Chapter XI is concerned with simulation modeling,
using formal simulation languages. Discussions are presented here on two
widely different languages. GPSS (the main simulation language in use in the
United States today) and WIDES (a* much simpler language especnally'
designed for inexperienced users).

ACKNOWLEDGMENTS

I wish to acknowledge the labors and influences of a few_friends and
colleagues without whom this text would not have materialized. Dr. E. L.
Murphree of Sage, a consulting cooperative in Champaign, Illinois, introduced
me to many of the subjects in the text, and, more notably, his contagious
curiosity and ability to kindle creative thinking have had a monumental
impact on my professional growth. The present form of this manuscript is
the result of many hundreds of hours of stimulating interaction with students
using several earlier drafts of this text. In particular, T wish to acknowledge
the efforts of S. Miller, E. Hobbs, F. Cheung, and L. Strauss for weeding out
many annoying errors in earlier drafts. The assistance of Ms. Lynda Parker
in editing an early draft of the text is also appreciated. Finally, Mrs. Doreen
Marquart is to be thanked for a patient and highly competent job in typing
all drafts as well as the final manuscript.

CONTENTS

PREFACE
ACKNOWLEDGMENTS
CHAPTER 1 CONSIDERATIONS IN PROGRAM DESIGN
EVALUATION
A. " Introduction
B. Program Development Process
C. Program Organization
D. Programming Details
+E. The User Interface
F. Program Evaluation
G. Test Problems
Bibliography
CHAPTER I LIST PROCESSING

A. Basic Concepts

W W N -

xii

16
17

19

vi

CHAPTER 1II

CHAPTER 1V

CHAPTER V

CHAPTER VI

B. Fundamental Operations

| CONTENTS

24 .
C. An Implementation 32
' Problems 37
Bibliography 38
SORTING AND SEARCHING
A. Sorting 39
- B. List Searches 58
C. Tree Searches 65i.
Problems 71
Bibliography 73
NETWORKS—FUNDAMENTAL CONCEPTS
A. Uses of Networks 714
P. Representation of Networks 75
C. Traversing a Directed Network 89
D. Generation of Random Networks 97
Problems 99
Bibliography 101
CRITICAL PATH METHODS
A. Project Networks 103
B. The CPM Algorithm 104
C. Systems Design Considerations 109
D. Selection of Time Units , 111
E. CPM for Day-to-Day Control 112
Problems -113
Bibliography * 114
RESOURCE CONSTRAINED SCHEDULING
METHODS S
A. The Problem ‘ 115
B. An Integer Programming J\pproach 116
C. A Heuristic Approach 119
D. An Evaluation of Different Heuristic Urgency
Factors S 123
E. A Resource Allocation/Manpower Leveling
System 129

CONTENTS vii

Problems . 136
Bibliography - 4 137
CHAPTER Vi LINEAR PROGRAMMING METHODS
A. The Linear Programming Problem 139
B. Mathematical Programming Systems - 147
C. The Simplex Method 153
D. Elements of the Revised Simplex Method 154
E. The Revised Simplex Method 157
F. Computational Considerations ‘ 163
Problems 168
Bibliography 169

CHAPTER Vi BRANCH AND BOUND METHODOLOGY

A. The Branch and Bound Concept 171
B. An Illustration ' 172
C. Design Considerations . i76
D. A Recursive Branch and Bound Method for
Zero:-One Programming . 178
E. Branch and Bound with Continuous Variables 183
F. An Evaluation : 187
' Problems 192
Bibliography . 193

CHAPTER IX RANDOM NUMBER GENERATORS

A. The Multiplicative Congruential Random Number :
. " Generator 194
B. Testing Uniform Random Number Generators 196
C. Exponentially Distributed_ Variates 204
D. Erlang Distributed Variates 206
E. Normally Distributed Variates 208
F. Chi-Square Distributed Variates 209
G. Poisson Distributed Variates 211
Problems 212
Bibliography 213

CHAPTER X DISCRETE EVENT SIMULATION
PROGRAMMING

A. Introduction 214

vii

CONTENTS

Elements of a Discrete Event Simulation Model 215
The Advantage of Computer Simulation

Languages 219
A Basic Simulation Facility - 221
Problems 235

Bibliography 236

CHAPTER XI TWO SIMULATION LANGUAGES

INDEX

A.
B.
C.

Simulation Modeling with GPSS 238
Simulation Modeling with WIDES 245
Programming with WIDES ' ' 253
Problems 258 -
Bibliography } 261
263

CHAPTER 1

CONSIDERATIONS IN
PROGRAM DESIGN AND EVALUATION

A. INTRODYCTION

Although the code in a FORTRAN program must follow very strict syn-
tactic rules, the act of designing such a program is a very creative process
subject to few if any formal rules. This has resulted in the development of
highly individualistic styles of program development and design. Some of
these styles are effective; others are not. Some do not work at all.

Our intent in this chapter is to identify the key attributes of “good” pro-
grams and “‘good” programming practices. In addition, we will suggest several
programming procedures and guidelines that may reduce the time and effort
required to write a program and may also improve the quality of the end
product. However, we are dealing with empirical guidelines; what works for
us, may or may not work for you.

The process of writing complex programs requires many considerations and
decisions. Of primary concern is the reduction of the time and effort to be
expended in the programming task so as to release time for the design and .
development of the algorithms which your program represents.

I. PROGRAM DESIGN AND EVALUATION

B. PROGRAM DEVELOPMENT PROCESS

As shown in Fig. I-1, the program development process starts with the user
recognizing a problem and ends with his interpreting a computer printout
that may provide relevant information and/or answers. The success or failure
of a particular programming effort is primarily determined by the degree to
which this printout assists the user in resolving his problem.

User . Analyst

General
problem is
recognized

(Problem is articulated ')

Inputs, outputs, and ovesall :
approach defined

Specific Macro flowcharts developed)
problem
defined i

-4.—(Detailed flowcharts developed)

)

tnitial documentation

Datacards
prepared

Inputs interpreted

FIG.I-1 Program development process.

C. PROGRAM ORGANIZATION 3

All program development activities should be geared toward the goal of
maximum user impact. Activities that have little or no bearing on this impact
(such as the development of a superefficient code that reduces the number of
statements or execution time by 10%;) should be omitted or abandoned. Ac-
tivities that do have great user impact, such as documentation and output
design, should be given in-depth attention.

In order to achieve maximum user impact, the program should possess the
following attributes and features: '

(1) adequate documentation,

(2) user oriented input requirements,

(3) outputs designed to fit user needs,

(4) validity checking of user inputs,

(5) meaningful error messages if necessary,
(6) reasonable turn around time.

These features must be incorporated as integral program elements from the
start of the program design process and cannot be added as an afterthought.
The following guidelines have proved effective in developing reasonably

efficient, error-frée code in a relatively short time:

‘(1) Spend considerable time planning the programming effort.

(2) Use a standardized program organization. -

(3) Write simple code.

(4) Write self-documented code.

(5) Be general whenever possible.

(6) Do not punch a single card until the program design is completed.

To breach this last lguideline can at times be most tempting. However, to do
so will almost certainly result in failure and loss of precious time. Detailed
discussion of all six guidelines will occur in the following sections.

C. PROGRAM ORGANIZATION

Simplicity is the key to good program organization. The goal is to achieve
a modularized program wherein two things occur: (1) the different logical
functions are separated in different sections of the program, and (2) these
separate sections are integrated in as simple a manner as possible.

A good test for adequacy of organization is to show the program to a com-
petent programmer. If after some study he is able to determine what the
program is supposed to do, then the program structure is probably sufficient.

One way to achieve a well-structured modular program design is to use a
. hierarchical approach in drawing the program flowchart. An initial one page

4 I. PROGRAM DESIGN AND EVALUATION

flowchart is drawn showing the major steps in the program. On successive
flowcharts, the functions in individual flowchart “boxes’ are “blown up” in
more and more detail. Whenever possible, do not extend a flowchart to a
continuation page. Keeping the flowchart on one page increases its readability
and allows the programmer to focus on program details relevant to a given
module without being distracted by other programming concerns. In Fig. I-2
we show a hierarchical flowchart of a program designed to multiply two
matrices together. This flowchart also incorporates the following two key
flowcharting conventions:

| read AROW,ACOL, BROW, BCOL | I ICOL = 1 I
—————{ iROW=1]

ACOL = BROW D2
?
[x=1
SUM = 0
Y
| Read and echo print A | SO =SUNT & (in AR

B (K, ICOL). K=K+ 1

[Read and echo print B]

[No K > ACOL
Yes
l Print answer] l Print message] / {ROW = IROW + 1

- Stop
CD No {ROW > ARO
?

Overall
Yes
1COL = ICOL + 1
No 1COL > BCOL
Exit

, Multiply
FIG. -2 Hierarchical flowchart. '

D. PROGRAMMING DETAILS 5

(1) Always draw flowcharts such that the longest chain of logic appears
as a straight line down the middle of the page.
(2) Do not cram too much information into one flowchart.

The layout of the computer code can be determined as soon as the flowchart
has been completed and all issues regarding method and program design have
been resolved. We advocate the use of a consistent layout for all programs.
The following sequence of major program blocks may serve as an illustration
of how a large number of computer codes can be structured:

(1) comment cards descnbmg program purpose, outputs, input card prep-
aration,

(2) additional comment cards describing thc method and key variables (if
~ necessary),
(3) declarative statements in the following order:

IMPLICIT
REAL
INTEGER
DIMENSION

- COMMON
LABELED COMMON
DATA -

(4) program initialization section,
(5) data input section,

(6) method,

) ~output.

While you may choose a dlﬁ'erent layout than the one suggested here, it is
important that you consmently use the same layout every time you write a
program.

_ AN
'D. PROGRAMMING DETAILS

A standardized approach to programming results in a semiautomatic
execution of trivial tasks (such as program layout, choice of variable names,
assignment of statement labels). Thus, it reduces the likelihood of errors in
these tasks and frees time and attention for more important tasks. A standard-
ized approach also pays off in maintenance and debugging since the resulting
standardized format renders the programs very easy to read and understand.

The following rules will assist in achieving a consistent and self- documentmg
style in the production of programs:

(LIag¥D) 1T1E TIVO
) dN3T

10L*2°T2/04'V Viva
O ‘4 ‘V/DOT/NOWIWOD

vivd dO0T1d

AQLS—DAV*TT=V

(sy)) sweu 1IVD
aN3

[sweisuod/isli vIva
¥sT[/auren/NOW OO

Vivd JD0714
uolssa1dxs = dJqeLrea

TIVO

vivd J00T1d
Juswusssy

srdwrexy uuoj [eIausn) JUDWAAEYS IqBINIIXT
INOXID‘9'Y SIUBISUOD BuluIejuod seale 38el0ls JO JYNUIPY a1‘o sjqeues
seare
001V ‘SIAIM UOWIWOD PUe ‘SaUNNOIGAS ‘SUOLIdUNJ JO ISYHUIP] — sureN
o‘a‘’v SewIwod Aq payesedas so[qeLIeA JO IS — 17
0£LT 001 ‘0001 Juesuod Je8ayur pousisun) ! 1°qe
aspows 3{Buis e Jo S)ULISUOD
8EL'Z/(O—d*V) Jo/pue s3[qelieA pue sioyesddo jo ausodwo) 2 uorssaudxy
€LITBEILSET'T uoisiid 3gnoQq 4
STV “INAL J[qeLIeA [eo1807] —_—
£V —1Z€8°€L Jadopuy- !
©OESI0—“SEL'T Joquinu [eay o wesuo)
sjdurexy uoniuysq 'AQQY Joynuspy

Al NVYLYOd VSN 40 sINLva] AdYy
1 3'19VL

