£73

Finite-State Language
Processing

edited by
Emmanuel Roche and Yves Schabes

A Bradford Book

The MIT Press
Cambridge, Massachusetts
London England

© 1997 The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) withoul permission in writing from the publisher.

This book was set in Computer Modern by the editors and was printed and
bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Finite-State Language Processing / edited by Emmanuel Roche and Y ves Sch-
abes.

p. cm. —(Language, speech, and communication)

“A Bradford book.”

Includes index.

ISBN 0-262-18182-7 (hc: alk. paper)

1. Natural language processing (Computer science). 1. Roche,
Emmanuel. II. Schabes, Yves. I1l. Series.
QA76.9.N38F56 1997
006.3r5/015113—dc2 96-48159

CIp

Finite-State Language
Processing

D7/ 0 /’J o

Language, Speech, and
Communication

Statistical Language Learning, Eugene Charniak, 1994

The Development of Speech Perception, edited by Judith Goodman and Howard
C. Nusbaum, 1994

Construal, Lyn Frazier and Charles Clifton, Jr., 1995
The Generative Lexicon, James Pustejovsky,1996

The Origins of Grammar: Evidence from Early Language Comprehension,
Kathy Hirsh-Pasek and Roberta Michnick Golinkoff, 1996

Language and Space, edited by Paul Bloom, Mary A. Peterson, Lynn Nadel,
and Merrill E Garrett, 1996

Corpus Processing for Lexical Acquisition, edited by Branimir Boguraev and
James Pustejovsky, 1996

Methods for Assessing Children’s Syntax, edited by Dana McDaniel,
Cecile McKee, and Helen Smith Cairns, 1996

The Balancing Act: Combining Symbolic and Statistical Approaches to Lan-
guage, edited by Judith Klavans and Philip Resnik, 1996

The Discovery of Spoken Language, Peter W. Jusczyk, 1996
Lexical Competence, Diego Marconi, 1997

Finite-State Language Processing, edited by Emmanuel Roche and Yves Sch-
abes, 1997

Preface

The theory of finite-state automata is rich, and finite-state automata tech-
niques are used in a wide range of domains, including switching theory, pattern
matching, pattern recognition, speech processing, handwriting recognition, op-
tical character recognition, encryption algorithm, data compression, indexing,
and operating system analysis (e.g., Petri-net).

Finite-state devices, such as finite-state automata, graphs, and finite-state
transducers, have been present since the emergence of computer science and are
extensively used in areas as various as program compilation, hardware model-
ing, and database managemeni. Although finite-state devices have been known
for some time in computational linguistics, more powerful formalisms such as
context-free grammars or unification grammars have typically been preterred.
However, recent mathematical and algorithmic results in the field of finite-state
technology have had a great impact on the representation of electronic dictio-
naries and on natural language processing. As a result, a new technology for
language is emerging out of both industrial and academic research. This book,
a discussion of fundamental finite-state algorithms, constitutes an approach
from the perspective of natural language processing.

The book is organized as follows.

Chapter 1. Emmanuel Roche and Yves Schabes. In this introductory chapter, the
basic notions of finite-state automata and finite-state transducers are described.
The fundamental properties of these machines are described and illustrated
with simple formal language examples as well as natural language examples.
This chapter also explains the main algorithms used with finite-state automata
and transducers.

Chapter 2. David Clemenceau. Finite-State Morphology: Inflections
and Derivations in a single Framework using Dictionaries and Rules. This
chapter describes how finite-state techniques can be used to encode a large
scale morphological lexicon where productive derivational rules apply. The
productive nature of derivational morphology is a source of complications for
morphological analysis. Many words are not listed in any static morphological

Xxii

Preface

dictionary, no matter how big or accurate it is. In other words, the size of the
lexicon is infinite. Many unknown words fall into the category of words derived
from a stem and inflectional affixes. For example, the word reanalysizable is
most likely not found in any dictionary. However, this word is part of the
language in the sense that it can be used and it is easily understandable. In
this chapter the author shows how finite-state transducers can be used naturally
to handle this problem. In addition, Clemenceau shows that the use of a
large dictionary and derivational rules lead to a homogeneous and efficient
representation using finite-state transducers.

Chapter 3. Kimmo Koskenniemi. Representations and Finite-state Com-
ponents in Natural Language. Koskenniemi describes a formal system called
“two-level rules”” which encodes finite-state transducers. The declarative rules
hold in parallel between the phenomenon in question and its analysis. Each
two-level rule is then compiled to a finite-state transducer and the set of rules
are combined using the intersection operation on finite-state transducers. Kos-
kenniemi illustrates the applicability of two-level rules to morphology and
syntax.

Chapter 4. Lauri Karttunen. The Replace Operator. This chapter intro-
duces a replace operator to the calculus of regular expressions and defines a
set of replacement expressions that concisely encode several alternate varia-
tions of the operation. Replace expressions denote regular relations, defined
in terms of other regular-expression operators. The basic case is unconditional
obligatory replacement. This chapter develops several versions of conditional
replacement that allow the operation to be constrained by context.

Chapter 5. Fernando C. N. Pereira and Rebecca N. Wright. Finite-State
Approximation of Phrase-Structure Grammars. Phrase-structure grammars are
effective models for important syntactic and semantic aspects of natural lan-
guages, but can be computationally too demanding for use as language models
in real-time speech recognition. Therefore, finite-state models are used in-
stead, even though they lack expressive power. To reconcile those two alterna-
tives, the authors design an algorithm to compute finite-state approximations of
context-free grammars and context-free-equivalent augmented phrase-structure
grammars. The approximation is exact for certain context-free grammars gen-
erating regular languages, including all left-linear and right-linear context-free
grammars. The algorithm has been used to build finite-state language models
for limited-domain speech recognition tasks.

Chapter 6. Max D. Silberztein. The Lexical Analysis of Natural Languages.
This chapter shows how finite-state techniques can be used in the lexical anal-
ysis of natural language text. The task of lexically analyzing text goes well
beyond the recognition of single words. In this approach, complex words such
as the compound hard disk are analyzed and marked in the lexical analysis
process. Max Silberztein shows how simple words, complex words (such as

Preface Xxiil

compound words) and local syntactic rules can be encoded within the same
finite-state framework. In addition, the chapter also shows how local finite-state
grammars can be used in the task of disambiguating the output of the lexical
analysis of text.

Chapter 7. Emrmanuel Roche and Yves Schabes. Deterministic Purt-of-
Speech Tagging with Finite-State Transducers. Using the problem of part-
of-speech tagging, this chapter illustrates the use of a cascade of finite-state
transducers combined with composition to perform part-of-speech tagging. It
also illustrates the use of the determinization algorithm for finite-state transduc-
ers. In this chapter, a finite-state tagger inspired by Eric Brill’s rule-based tagger
is presented. It operates in optimal time in the sense that the time to assign
tags to a sentence corresponds to the time required to deterministically follow
a single path in a deterministic finite-state machine. This result is achieved by
encoding the application of the rules found in the tagger as a non-deterministic
finite-state transducer and then turning it into a deterministic transducer. The
resulting deterministic transducer yields a part-of-speech tagger whose speed
is dominated by the access time of mass storage devices. The results presented
in this paper are more general than part-of-speech tagging since it is shown
that, in general, transformation-based systems can be turned into subsequential
finite-state transducers.

Chapter 8. Emmanuel Roche. Parsing with Finite-State Transducers. This
chapter describes how finite-state transducers can be used for natural language
parsing.

Chapter 9. Atro Voutilainen. Designing a (Finite-State) Parsing Grammar.
The author shows how the intersection of finite-state automata provide an
efficient way to implement a parser. In this approach, phrase boundaries (such
as markers that specify the beginning and the end of a noun phrase) are encoded
in the local rules represented with finite-state machines. This chapter discusses
the design of a finite-state parsing grammar from a linguistic point of view.
Attention is paid to the specification of the grammatical representation that can
be viewed as the linguistic task definition of the parser, and to the design of
the parsing grammar and the heuristic data-driven component. Illustrations are
given from an English grammar.

Chapter 10. Pasi Tapanainen. Applying a Finite-State Intersection Gram-
mar. This chapter deals with the potential quadratic explosion of the inter-
section algorithm for finite-state automata. Given an input sentence and a
syntactic grammar encoded by a set of finite-state automata, the result of ap-
plying the grammar to the input string can be seen as the intersection of the
input with all of the grammar rules. Although the final result of this intersection
is small, intermediate results can explode in size. In addition, a precompila-
tion of the grammar into one single finite-state automaton yields an automaton
whose size cannot be practically managed. The author shows how different

Xiv

Preface

ordering schemes can be used to guarantee that the intermediate results of the
intersection do not explode in size.

Chapter 11. Maurice Gross. The Construction of Local Grammars. Gross
observes that while a systematic categorization of the objects to be studied is an
important part of sciences such as biology or astronomy, such categorizations
are rare to nonexistent in the field of linguistics. Gross’s goal is to account for
all the possible sentences within a given corpus and beyond. This chapter gives
examples where the finite constraints encoded with finite-state automata can
be exhaustively described in a local way, that is, without interferences from the
rest of the grammar. These examples demonstrate that a cumulative approach
to the construction of a grammar is indeed possible.

Chapter 12. Mehryar Mohri. On the Use of Sequential Transducers in
Natural Language Processing. This chapter considers the use of a type of
transducers that support very efficient programs: deterministic or sequential
transducers. It examines several areas of computational linguistics such as
morphology, phonology and speech processing. For each, the author briefly
describes and discusses the time and space advantages offered by these trans-
ducers.

Chapter 13. Jerry R. Hobbs, Douglas Appelt, John Bear, David Israel,
Megumi Kameyama, Mark Stickel, and Mabry Tyson. FASTUS: A Cascaded
Finite-stare Transducer for Extracting Information from Natural-Language
Text. This chapter illustrates the technique of combining a cascade of finite-
state transducers with composition. The authors show how such a cascade can
be used to build a system for extracting information from free text in English,
and potentially other languages. The finite-state automata have been built and
tested using a corpus of news articles and transcripts of radio broadcasts on
Latin American terrorism. The resulting system called FASTUS (a slightly
permuted acronym for Finite-State Automaton Text Understanding System)
is able to fill templates recording, among other things, the perpetrators and
victims of each terrorist act, the occupations of the victims, the type of physical
entity attacked or destroyed, the date, the location, and the effect on the targets.
FASTUS has been very successful in practice. The system 1s an order of
magnitude faster than any comparable system that does not take advantage of
the finite-state techniques. Moreover, within a very short development time,
state-of-the-art performance can be achieved. FASTUS has been shown to be
very competitive with other systems in competitions organized by the Message
Understanding Conference.

Chapter 14. Eric Laporte. Rational Transductions for Phonetic Conversion
and Phonology. Phonetic conversion, and other conversion problems related
to phonetics, can be performed by finite-state tools. This chapter presents a
finite-state conversion system, BiPho, based on transducers and bimachines.
The linguistic data used by this system are described in a readable format and

Preface XV

actual computation is efficient. The system constitutes a spelling-to-phonetics
conversion system for French.

Chapter 15. Fernando C. N. Pereira and Michael D. Riley. Speech Recog-
nition by Composition of Weighted Finite Automata. This chapter presents a
general framework based on weighted finite automata and weighted finite-state
transducers for describing and implementing speech recognizers. The frame-
work allows us to represent uniformly the information sources and data struc-
tures used in recognition, including context-dependent units, pronunciation
dictionaries, language models and lattices. Furthermore, general but efficient
algorithms can used for combining information sources in actual recognizers
and for optimizing their application. In particular, a single composition algo-
rithm is used both to combine in advance information sources such as language
models and dictionaries and to combine acoustic observations and information
sources dynamically during recognition.

Acknowledgments

The editors would like to thank several people who helped us to bring
this project to fruition. We thank MERL - A Mitsubishi Electric Research
Laboratory, Information Technology America, Cambridge, USA. We also thank
the anonymous referees for their advice regarding revisions of this book. And
finally, we thank professor Stuart Shieber and the students at Harvard University
who took part to the 1996 seminar on “Engineering Approaches to Natural
Language Processing” for valuable comments on previous versions of this
volume.

Contents

Preface xi
Acknowledgments xvii

1 Introduction

Emmanuel Roche and Yves Schabes 1
1.1 Preliminaries |
1.2 Finite-State Automata 3
1.3 Finite-State Transducers 14
14 Bibliographical Notes 63
2 Finite-State Morphology: Inflections and Derivations in a Single

Framework Using Dictionaries and Rules
David Clemenceau 67
2.1 Introduction 67
2.2 Towards a Structured Dictionary 69
2.3 MORPHO: a Morphological Analyzer Based on a Dictionary

and a Two-Level System 81
2.4 A Single Framework for Inflections and Derivations Recogni-

tion and Generation 91
2.5 Conclusion 96

3 Representations and Finite-State Components in Natural Language

Kimmo Koskenniemi 99
3.1 A Framework = 99
3.2 Two-Level Morphology 101
3.3 Finite-State Syntactic Grammar : 108
3.4 Experiences 114

4 The Replace Operator
Lauri Karttunen , 117

4.1 Introduction 117

vi

Contents

4.2 Unconditional Replacement 121
4.3 Conditional Replacement 128
44 Comparisons 144
4.5 Conclusion 146
Finite-State Approximation of Phrase-Structure Grammars
Fernando C. N. Pereira and Rebecca N. Wright 149
S.1 Motivation 149
5.2 The Approximation Method 150
5.3 Formal Properties 155
5.4 Implementation and Example 163
5.5 Informal Analysis 166
5.6 Related Work and Conclusions 168
The Lexical Analysis of Natural Languages
Max D. Silberztein 175
6.1 The Lexical Analysis of Programming Languages and of Nat-

ural Languages 175
6.2 The Units of Analysis 178
6.3 The Representation of Simple Words 180
6.4 Representation of Compound Words 189
6.5 Representation of the Results of the Analysis, Elimination of

Ambiguities by Local Grammars 193
6.6 Tagging Programs and Lexical

Analysis 198
6.7 Conclusion 201

Deterministic Part-of-Speech Tagging with Finite-State Transduc-
ers

Emmanuel Roche and Yves Schabes 205
7.1 Introduction 205
7.2 Overview of Brill’s Tagger 207
7.3 Complexity of Brill’s Tagger 209
7.4 Construction of the Finite-State

Tagger 210
7.5 Lexical Tagger 215
7.6 Tagging Unknown Words 216
7.7 Empirical Evaluation 217
7.8 Finite-State Transducers 218
7.9 Determinization 223
7.10 Subsequentiality of Transformation-Based Systems 233

7.11 Implementation of Finite-State Transducers 236

Contents

10

11

7.12 Acknowledgments
7.13 Conclusion

Parsing with Finite-State Transducers
Emmanuel Roche

8.1 Introduction

8.2 Background

8.3 A Top-Down Parser for Context-Free Grammars

8.4 Morphology

8.5 A Parser for Transformation Grammars
8.6 Finite-State Acceleration

8.7 A Transducer Parser for Tree-Adjoining Grammars

8.8 Conclusion

Designing a (Finite-State) Parsing Grammar
Atro Voutilainen

9.1 Introduction

9.2 Framework

9.3 Grammatical Representation

9.4 Sample Rule

9.5 Heuristic Techniques

9.6 Final Remarks

Applying a Finite-State Intersection Grammar

Pasi Tapanainen

10.1 Introduction

10.2 Straight Intersection

10.3 Sequential Methods

10.4 Parallel Intersection

10.5 Hybrid Intersection-Search Method
10.6 A Small Comparison

10.7 Theoretical Worst-Case Study

10.8 Conclusion

The Construction of Local Grammars
Maurice Gross

11.1 Introduction

11.2 Linguistic Modules

11.3 Transformations

11.4 Conclusion

vil

237
237

241
241
243
244
247
254
268
271
278

283
283
284
288
293
298
303

311
311
313
314
320
321
322
323
326

329
329
334
349
352

viii

12

13

14

15

Contents

On the Use of Sequential Transducers in Natural Language Pro-

cessing

Mehryar Mohri 355
12.1 Introduction 355
12.2 Definitions 356
12.3 Characterization and Extensions 359
12.4 Phonology and Morphology 364
12.5 Representation of Large Dictionaries 365
12.6 Syntax 372
12.7 Speech Processing 375
12.8 Conclusion 378
12.9 Acknowledgments 378

FASTUS: A Cascaded Finite-State Transducer for Extracting In-
formation from Natural-Language Text

Jerry R. Hobbs et al. 383
13.1 Introduction 383
13.2 The Information Extraction Task 384
13.3 The Finite-State Approach 388
13.4 Overview of the FASTUS Architecture 389
13.5 Complex Words 391
13.6 Basic Phrases 391
13.7 Complex Phrases 393
13.8 Domain Events 395
13.9 Merging Structures 399
13.10History of the FASTUS System 400
13.11Conclusions 402
Rational Transductions for Phonetic Conversion and Phonology

Eric Laporte 407
14.1 Introduction 407
14.2 An Introductory Example 408
14.3 Transductions Related to Phonetics 410
14.4 Construction of the Transductions 413
14.5 Mathematical Properties 418
14.6 Implementation 422
14.7 Conclusion 428
Speech Recognition by Composition of Weighted Finite Automata
Fernando C. N. Pereira and Michael D. Riley 431

15.1 Introduction 43
15.2 Theory 434

Contents

15.3 Speech Recognition
15.4 Implementation
15.5 Applications

15.6 Further Work

Contributors

Index

ix

4472
445
446
447

455

457

1 Introduction

Emmanuel Roche and Yves Schabes

The theory of finite-state automata is rich, and finite-state automata tech-
niques are used in a wide range of domains, including switching theory, pattern
matching, pattern recognition, speech processing, handwriting recognition, op-
tical character recognition, encryption algorithm, data compression, indexing,
and operating system analysis (e.g., Petri-net).

Finite-state devices, such as finite-state automata, graphs, and finite-state
transducers, have been present since the emergence of computer science and are
extensively used in areas as various as program compilation, hardware model-
ing, and database management. Although finite-state devices have been known
for some time in computational linguistics, more powerful formalisms such as
context-free grammars or unification grammars have typically been preferred.
However, recent mathematical and algorithmic results in the field of finite-state
technotogy have had a great impact on the representation of electronic dictio-
naries and on natural language processing. As a result, a new technology for
language is emerging out of both industrial and academic research. This book,
a discussion of fundamental finite-state algorithms, constitutes an approach
from the perspective of natural language processing.

In this chapter, we describe the fundamental properties of finite-state au-
tomata and finite-state transducers, and we illustrate the use of these machines
through simple formal language examples as well as natural language exam-
ples. We also illustrate some of the main algorithms used in connection with
finite-state automata and transducers.

1.1 Preliminaries

Finite-state automata (FSAs) and finite-state transducers (FSTs) are the two
main concepts used in this book. Both kinds of machines operate on strings
or, in other words, on sequences of symbols. Since the notion of string is so
prevalent, in this section we define this concept as well the notations that are
used throughout this book.

Emmanuel Roche and Yves Schabes

Strings are built out of an alphabet. An alphabet is simply a set of symbols
or characters, and can be finite (as is the English alphabet) or infinite (as is
the set of the real numbers). A string is a finite sequence of symbols. The set
of strings built on an alphabet X is also called the free monoid ¥*. Several
notations facilitate the manipulations of strings. For example, depending on
the context, either word or w - o - r - d denotes the following sequence:

(ai)i:m:(w,o,r,d) (1])

In addition, - denotes the concatenation of strings defined as follows:

(ai)izin - (05)j=1.m = (€i)i=1 n4m (1.2)
with

S ifi <n
T byen n+1<i<ntm

However, this notation is rarely used in practice. Instead, wo - #d or simply
word denotes the concatenation of “wo” and “rd”. The empty siring, that is
the string containing no character, is denoted by e. The empty string is the
neutral element for the concatenation operation. Expressed formally, for a
string w € X*:

WwreE=€-w=w (1.3)

Given two strings « and v, u A v denotes the string that is the longest
common prefix of u and v.

Another notion important for the understanding of FSAs and FSTs is the
notion of sets of strings. Concatenation, union, intersection, subtraction, and
complementation are operations commonly used on sets of strings.

If L, C ©* and L, C £* are two sets of strings, the concatenation of L;
and L, is defined as follows:

L]'LQI{U-UIU,ELlandUELz} (1.4)

The following notations are often used, for any string v € " and any set
L CY¥*:

