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Preface

Computers and Mathematics '89 is the third in a series of conferences devoted to the use
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A Completion Procedure for Computing a
Canonical Basis for a k-Subalgebra

Deepak Kapur
Department of Computer Science
State University of New York at Albany
Albany, NY 12222
kapur@albanycs.albany.edu

Klaus Madlener
Fachbereich Informatik
Universitit Kaiserslautern
D-6750, Kaiserslautern, W. Germany

Abstract

A completion procedure for computing a canonical basis for a k-subalgebra is proposed.
Using this canonical basis, the membership problem for a k-subalgebra can be solved, The
approach follows Buchberger's approach for computing a Grébner basis for a polynomial
ideal and is based on rewriting concepts. A canonical basis produced by the completion
procedure shares many properties of a Grobner basis such as reducing an element of a k-
subalgebra to 0 and generating unique normal forms for the equivalence classes generated
by a k-subalgebra. In contrast to Shannon and Sweedler’s approach using tag variables, this
approach s direct. One of the limitations of the approach however is that the procedure
may not terminate for some orderings thus giving an infinite canonical basis. The procedure
is illustrated using examples.

1 Introduction

A procedure and related theory for computing a canonical basis for a finitely presented k-
subalgebra are presented. With a slight modification, the procedure can also be used for the
membership problem of a unitary subring generated by a finite basis using a Grobner basis like
approach.

The procedure is based on the rewriting approach following Buchberger (1965, 1976, 1985)
and Knuth and Bendix [1970]. The structure of the procedure is the same as that of Buchberger’s
algorithm for computing a Grobner basis of a polynomial ideal. The definitions of reduction and
critical pairs (also called S-polynomials) are different; they can be considered as a generalization
of these concepts in Buchberger’s algorithm. This approach for solving the membership problem
for a k-subalgebra is quite different from the approach taken by Shannon and Sweedler [1987,
1988] in which tag variables are used to transform the subalgebra membership problem to the
ideal membership problem. The proposed approach is direct, more in the spirit of the recent,
work of Robbiano and Sweedler [1988). However, it is based on rewriting concepts and employs
completion using critical pairs.



a G is called a canonical basis (or even a Grobner basis) of the k-subalgebra g.enerated by F.
T'he unique normal form of a polynomial p with respect to G is cal‘led the cax'lo.mcal for.m of the
polynomial p with respect to G. For definitions of various properties of rewr'mng rel.atmns, the
reader may consult {Loos and Buchberger]. Below, we assume that polynomials are in ?he sum
of products form and they are simplified (i.e., in a polynomial, there are no terms with zero
coefficients, monomials with identical terms are collected together using the operations over the
field k).

3 Making Rules from Polynomials

Let < be a total admissible term ordering which extends to a well-founded ordering on polynomi-
als [Buchberger, 1985]. Let ht(f) be the head-term of f with respect to <. For each polynomial
f, we can define a rewrite rule (simplification rule) as follows (for making a rule, we can assume

without any loss of generality that the head-coefficient of f is 1): '

ht(f) = —(f = ht(f)).

Associated with a basis {f1,+-, fm, -} of polynomials is a set R = {L; — R, --,
Lm = Ry, ---} of rules made as above. We will also use k[R] to stand for the k-subalgebra gener-
ated by {f1," -+, fm,*+}. Wedefine a reduction relation induced by R on polynomials as follows:

p—q if and only if

i. p=ct+ p/, where ct is a monomial in p (c € k, ¢ # 0, and ¢ is a term) and p’ does not
have any monomial whose term is ¢,

ii. thereare 1 < jy < ja < -+« < Jiy, 1 2 0, natural numbers dj,,+++,d; such that ¢t =
L,',"" Lp%... L,.‘d:'.,

iii. the term ¢’ in any monomial bigger than ct in p cannot be expressed as a product of powers
of the left sides of a non-empty subset of the rules in R, and

iv.g=p-— c(LJ': - Ry )d"i1 (Lj ~ Riz)diz s (Lj— Rfa)&'ﬁ’

- It is easy to see that p— ¢ € k[R].

Unlike in Grobner basis algorithms for polynomial ideals or in term rewriting systems, a
single step reduction can thus simultaneously involve many rules.

The third condition above is strictly not necessary but is motivated by implementation
concerns. If this condition is not imposed and a weaker reduction relation is defined using (i),
(i) and (iv), in which any monomial (instead of the biggest possible monomial) can be reduced,
the results below work also (some proofs may have to be modified though). Using the above
definition of a reduction relation, it is possible to consider monomials in descending order for
rewriting since any monomial in p once reduced will not reappear in the polynomials obtained
by rewriting p. )

Even if ¢ satisfies condition (i) above, we cannot rewrite a proper subterm of t; we must
always rewrite the whole term ¢. This is to s0 because the polynomial p— ¢ must be in k[R]. Also
observe that an element of k always reduces to 0 using any basis by taking djy=---=d;, =0
Thus R need not contain rules corresponding to elements of k as well as the right sides of rules
need not have elements of k as monomials.

o



The proposed approach has a disadvantage however over the indirect approach of Shannon
and Sweedler in the sense that for some orderings on indeterminates and terms, the completion
procedure may noét terminate and thus generate an infinite canonical basis. This raises an
interesting open question: Given a finitely presented k-subalgebra, does there exist an orderfng
on terms for which the completion procedure will terminate? If so, how can such an ordering

be computed?

In the next section, definitions are given. Section 3 discusses how rules are .made from
polynomials, and a reduction relation is defined using a set of rules c?rrt'aspondmg to a k-
subalgebra basis. Properties of this reduction relation are stated and it is a?)?wn that th‘e
reduction relation is strong enough so that its reflexive, symmetric and transitive closure is
precisely the equivalence relation induced by the associated k-subalgebra. A canonical basis of a
k-subalgebra is defined. Section 4 defines superpositions, critical pairs and S-polynomials which
lead to a finite test for checking whether a given finite basis of a k-subalgebra is a canonical
basis. Section 5 is the main result which shows that if all S-polynomials corresponding to
critical pairs of a set of rules reduce to 0, then the corresponding basis is canonical. Section 6
outlines a completion procedure based on the test of Section 5, and properties of canonical bases
generated by a completion procedure are discussed. A finite canonical basis always exists for
a k-subalgebra over k[z]. A number of examples taken from papers by Shannon and Sweedler
as well as Robbiano and Sweedler are discussed illustrating the procedure. Some comments on
how this approach can be modified to be applicable to unitary subrings are given in the final
section. Further details and proofs are given in an expanded version of this paper [Kapur and
Madlener, 1989].

2 k-Subalgebras and Canonical bases

Let kfz,,---,z,] be the polynomial ring over a field k with z,,--.,z, as indeterminates. A
unitary subring generated by a finite basis F = {fi,---. fm}, each f; € klz,, -+, z,), is the
smallest subring containing 1 and the elements of F (i.e., if p and g are in the subring, then
P—q as well as p* g are in the subring!). A k-subalgebra generated by F is the smallest unitary
subring generated by F and containing & (see Zariski and Samuel for definitions). Following
Shannon and Sweedler, we write this k-subalgebra as k[fy,--, f.]. It is easy to see that a
k-subalgebra k{f;,- -, f..] defines an equivalence relation on the polynomial ring kizy,--,2,),
just like a congruence relation defined by an ideal. Polynomials p and ¢ are equivalent modulo
k{f1,--+, fm] if and only if p~ g € kfy,-- -, fu).

Our goal is to compute canonical forms for equivalence classes induced by a k-subalgebra
E[f1, -, fm]. We follow the approach proposed by Buchberger {1965, 1985} for computing canon-
ical forms for congruence classes defined by a polynomial ideal. As in Buchberger’s approach,
with each basis F, we associate a reduction relation — F; we will often omit the subscript when-
ever it is obvious from the context. This reduction relation is associated after first defining a
total well-founded ordering on polynomials in k[zy,---,z,). Such an ordering can be defined in
the same way as is usually done in the case of the Grobner basis algorithm for polynomial ideals
using admissible orderings on terms [Buchberger, 1985).

From a given basis F, the goal is to compute another basis (preferably finite) G = {g;,--,¢,}
such that (i) k[f1,-- -, fn] = E[gy,-- - »9-}, (ii) for every element p € E[fi,«, fm], p =% 0, and
(iii) for every element ¢ € k[z1,-- -, z,], ¢ has a unique normal form with respect to —¢g. Further,
for any p and g, p and ¢ have the same normal form if and only if p~q € k{fy,--, fin]. Such

Contrast this definition with that of an ideal which is closed under multiplication with respect to any element
of the polynomial ring k[zy, - -, Z,] instead of only the elements of the subring.

3



We believe that Robbiano and Sweedler [1988] defined the reduction relation in a similar way
except that they consider only the head-term of p instead of any term in p. In their approach,
if the head-term cannot be reduced (i.e., cannot be expressed as a product of powers of the left
sides of any subset of rules), then the polynomial p cannot be reduced.

Consider the following example from Shannon and Sweedler [1988).

Let F = {1. 2° -z, 2. 2%} be a basis over Q{z]. Using the degree ordering, the rules
corresponding to the above polynomials are: R = {1. z° ~ z, 2. z? — 0}. Any polynomial
which has a term whose degree is a multiple of 3 or a multiple of 2, can be reduced using the
rule 1 or rule 2 respectively. A polynomial containing z° or z7 as a term can also be reduced
using both the rules 1 and 2. However, a monomial with term z cannot be reduced by R. For
example, 27— 22% 4 3% — 2+ —22% 4 42° — 2 — 425~ 2 — 42— 2 —+ 42 — 2 — 4z, The
polynomial 4z cannot be reduced further.

3.1 Properties of Reduction Relations

Proposition 3.1: The reduction relation — is terminating.

This follows from the fact that (i) the left side of a rule is the head-term of a polynomial
with respect to an admissible ordering < which is well-founded and (ii) the reduction relation
always completely reduces a monomial by replacing it by a strictly smaller polynomial.

A polynomial p is said to be irreducible (or in normal form) if and only if there is no ¢ such
that p =g A polynomial p has a normal form q if and only if p —+* g and ¢ is in normal form.
For example, 4z above is a normal form of 27 — 228 + 325 — 2. Thus,

Proposition 3.2: Every p € k[zy,--- ,Zx} has a normal form with respect to the reduction
relation — defined by a set of rules R.

Theorem 3.3: The relation «*, the reflexive, symmetric and transitive closure of —, is
the k-subalgebra equivalence relation induced by k{R] associated with R, i.e. for any p and q,
p+* ¢ if and only if p - q € k[R)}.

The proof of this theorem is very similar to those given in [Buchberger, 1976} for the con-
gruence relation defined by an ideal over a polynomial ring over a field and in {Kandri-Rody
and Kapur; 1984] for the congruence relation defined by an ideal over a polynomial ring over a
Euclidean domain.

A reduction relation — is said to be canonical if and only if — is terminating and is confluent,
i.e., for every polynomial p, p has a unique normal form (called the canonical form of p) with
respect to —. A basis is called a canonical basis if and only if the associated reduction relation
=+ is canonical. In the next section, we discuss a finite test for checking whether a basis is a
canonical basis using the concepts of superpositions, critical pairs and S-polynomials.

4 Superposition, Critical-pair and S-polynomial

We now define the notions of superposition and critical pairs for rules in

R={lLi—~ Ry, - L~ R, ---}. Just as a reduction relation is defined using many rules, the
critical pair and S-polynomial are defined, in general, using more than two rules (equivalently,
polynomials). This is quite different from the definitions of critical pair and S-polynomial in
[Buchberger, 1976; 1985) as well as in {Kandri-Rody and Kapur, 1984], or for that matter in term
rewriting systems. These definitions can in fact be considered generalizations of the definitions
of M-polynomials given in [Kapur and Narendran, 1985]). Below, we give two different ways
to define superpositions and S-polynomials; the first one is intuitively appealing whereas the

4



second one is suitable for computations and proofs.

A finite non-empty subset {L;,L;,--+,L;} of R is said to m.perpose'(’or ovet{a'p). with
another disjoint subset {Li,, Li,,-- -, L;,} of R (i.e., rule numbers j;’s and i/’s are dnjoml? if
and only if there is a minimal vector of positive natural numbers < d;,,d;,,- - Zt{,-, >, which
are exponents associated with rules {L;,L;, -+, L;}, and another vector of positive numbers
< €&, ¢i5, ", €&, >, exponents associated with rules {L;,, L, -+, L;, }, such that

Ly Lg%s.. L% = Ly L% - Ly,

The vector < d;,,d;,, -+ ,d;, > is minimal in the sense that for no vector that is smaller thal'l it,
there are positive numbers < e;,, e;,, -+ -, €;, > satisfying the above property about th.e l.eft sides
of the rules (< ¢;, ¢z, -, ¢ > is smaller than < €}, 6, -+, ¢ > if and only if they are distinct and
each ¢; < ¢j,1 < i < 1). It is possible to have two non-comparable !’ vectors < CiysCinye 7 85y >
and < ¢, ¢, -, €, > for the same minimal k-vector < dj,,d;,, -, d;, > satisfying the abo’re
property about the left sides of the rules. In that case, the rule subset {L;, L, --,L;} is said
to superpose in more than one ways.

The critical pair associated with this superposition is:

<Ly Ly L% — (L - R;,)% (Ly, - Ryy)% -+ (Ly — Ry)%, .
Lﬁ i L‘z." e L".l““ - (I/") - Rﬁ )“‘ (Liz - Rﬁ)e" ‘o (Li‘/ - Ri,l)‘lll >.
The S-polynomial corresponding to the critical pair is:
(Ljy = Ry)* (Ly, — Ry)% - (Lj; = Ry)% — (L, = Riy)® (Ly, ~ Ry)s .. (Lip = Rig)™.

It is obvious that the S-polynomials of R belong to k[R).

The set of critical pairs for a finite set R of rules is always finite; a bound can be computed
using the degree of the indeterminates appearing in the left sides of rules {Stickel, 1981; Huet,
1978). The finiteness of the number of critical pairs also follows from the fact that the vectors

of exponents < dy,--,d,,, e, - 1em >, with d;, e; > 0, satisfying the following equation, form
an abelian monoid whkh has a finite basis.

L%L%.. Ly = [, L. L,

An alternate way of computing the exponents of the left sides of rules above is to set up a finite
set of diophantine equations from the left sides of rules for a finite R2. For each indeterminate
z;, there is a linear diophantine equation

Aoy + davi, + -+ + dvi,, = v, + €305, + -+ + emYi,,,

where v;, 4 --,v;, are, respectively, the degrees of z; in the left sides of rules 1,«-,m. So
there are n such linear diophantine equations. These equations are solved for dy,--,d,, and
€1, *,em and a basis of minimal non-zero simultaneous solutions in which if d; # 0, then
¢; = 0 and if e; 3 0, then d; = 0, can be computed. Using these basis vectors, any solution
to these simultaneous equations can be obtained as a nonnegative linear combination of the
vectors in the basis (i.e., the multipliers are nonnegative). Further, only one of the two solutions
<dj, - dp,ey, e 6m > and < €1 " myd1,+ -+ ,dm > need to be considered because of the
symmetric nature of the diophantine equations. These equations can be solved using algorithms
proposed for solving linear diophantine equations arising in assaciative-commutative unification
problems [Stickel, 1981; Huet, 1978]. The finiteness of a basis from which all solutions to the
above set of equations can be generated, also follows from the results related to thege algorithms.

It will be interesting to compare these definitions with the corresponding concepts in Rob-
biano and Sweedler’s approach. .

*This formalation however extends to be applicable to an infinite R also,
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5 A Test for a Canonical Basis

The following is a Church-Rosser theorem for k-subalgebras.

Theorem 5.1: The set R = {L;y — Ry,-++,Lm — Rm,- -} is canonical or equivalently,
the corresponding basis {fy, -, fm,--*} is a canonical basis if and only if all S-polynomials
generated using every finite subset of R reduce to 0.

The proof of the theorem uses the following lemmas.

Lemma 5.2: If p —»* 0, then for any L; — R; € R, (L; — R;)p —=* 0.

Note that it is not necessarily the case that ¢t p —* 0 for any term t or even for t = L;, the
left side of a rule in R. v

It follows by induction from the above lemma that

Corollary 5.3: If p +* 0, for any ¢ € k, and any natural ,numbers dj,,--,d;,

(c(Ljy = Ry)* -+ (Lj = R;)* p) —+* 0.

In addition, we have:

Lemma 5.4: If p; ~ p, —* 0, then p, and p;, are joinable, i.e., there is a ¢ such that p, —* q
and p, —* g.

Sketch of Proof of Theorem 5.1: The only if part of the proof is easy and is omitted. The
proof of the if part follows. Consider a polynomial p that can be reduced in two different ways.
Since the reduction is defined by rewriting the biggest possible monomial which can be reduced
using a finite subset of rules in R, the only case to consider is when p has a monomial ct’ which
can be reduced in two different ways and no monomial greater than ct’ in p can be reduced. So
there exist two m-vectors < a;,---,6, > and < by,--,byn > with some a; and b; possibly 0,
such that ¢/ = L* -+ Lam = L} ... Lin and p— py = p— (L, — BRy)* . (L — Rp)°™ as well
ap—spp=p—c(ly—R)% - - (Ly— Rn)’. Let ¢; = min(as, by), -+ ,cm = min(am, bn); ¢'s
correspond to the common powers of the rules applied on both sides. Let d; = a; ~ ¢, yoor gy =
Gn—cmand e; = b —c1, -, e = bn ~ . Because of Corollary 5.3, and Lemma 5.4, it suffices
to show that

9= (L= R)* o (L = R)¥m = (Ly = R (L = Ra)= =0, ()

such that for any ¢, if d; # 0 then e; = 0, and if ¢; #0thend; =0. 5 7

This is shown by Noetherian induction using the well-founded ordering < on the head-term
te= L%, L 9 = Ly* ... L,°™. The basis step of t = 1 is trivial. The induction hypothesis
is to assume that (») holds for ¢’ < ¢.

There are two cases: (i) ¢ cannot be decomposed into ¢, #1and {; # 2such that t = ¢ ¢t,,
and both ¢, and 1 can be reduced by the rules in R. This implies that the exponent vector
<dy,--+,dm,e1,-*-,em > belongs to a minimal basis set of solutions obtained from diophantine
equations associated with R since this exponent vector cannot be expressed as a sum of two

nou-zero exponent vectors. The S-polynomial corresponding to this exponent vector reduces to
0 by the assumnption that all the S-polynomials of R reduce to 0.

(i) t = % 4, and #, & # 1: By the induction hypothesis, for i = 1,2,
8i= (L1 = R)™ o (L — R)*™ = (L1 = R1)™ -+ (Lpn — R} —*0,

where t; = L% ... [, 3m = [ o1 ... [ eim Obviously, d; = dy; + dy; and e; = ey; + €3;.

If s, reduces to 0 in /; reduction steps by reducing terms ryy, -+ -, ryy, in the first, - - -, l;-th step,
respectively, then by Corollary 5.3, (L, — Rl)d"’ coo(Liy — R,,.)d"" 8y also reduces to 0 in exactly
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I; steps by reducing terms ¢; ryy,- -+, £3 vy, in the respactive steps. A similar reduction sequence
can be obtained for (L; — )™ -+ (L, — R)®™ 3: reducing to 0 from the reduction sequerce
332 0. Now g = (£ = R)™ (L~ B 55 + (L= )™ - (Lp = B} 53 a0
a reduction sequence froma ¢ to O can be corstructed by app‘ropriately mixing the reduction
steps from the ahove reduction sequances and adcitional reduct,xo‘n sequences available using the
induction hypothesis. These details can be fourd i the proof given in an expanded version of
this paper {¥apur and Madlener, 1989).
Thus R is a canonical basis. O

6 Corpietion Procedure

Frora the above theorer, oue also gets a completion procedure similar to Buchberger’s Grobner
basis algorithm [1985] or the Knuth-Bendix procedure [1970] (see also Huet, 1981) whose cor-
rectness can be established using methods similar to the one given in Buchberger's papers. If
a given basis of a k-subalgebra is not a canonical basis, then it is possible to generate a canon-
ical basis equivalent to a given basis of a k-subalgebra using the completion procedure. For
every S-polynomial of a basis that does not reduce to 0, the current basis is augmented with a
normal form of the S-polynomial and the basis is inter-reduced. This process of generating S-
polynomials, checking whether they reduce to 0, and augmenting the basis with normal forms of
S-polynomials is continued until all S-polynomials of the final basis reduce to 0. Optimizations
and heuristics can be introduced into the completior procedure in regards to the order in which
various finite subsets of a basis are considered; further, since a finite subset of a basis may result
in many S-polynomials, if some S-polynomial results in a new rule which simplifies any rule in
the subset under consideration, then the subset does not have to be considered.

Unlike Grébner basis algorithms, this process of adding new polynomials to a basis may not
always terminate. An example below illustrates the divergence of the completion procedure.
We consider this a major limitation of this approach in contrast to Shannon and Sweedler’s
approach. However, the following results are immediate consequences of general results in term
rewriting theory [Huet, 1981; Butler and Lankford, 1980; Avenhaus, 1985; Dershowitz et al,
1988] since orderings on polynomials are total, thus a rule can always be made from a polyno-
mial, and the completion procedure will never abort because of the inability to make a rule.

Theorem 6.1: If a completion procedure follows a fair strategy in computing superpositions
and critical pairs, then the completion procedure serves as a semi-decision procedure for k-
subalgebra membership even when the completion procedure does not terminate.

Theorem 6.2: Given a polynomial ordering <, if a k-subalgebra has a finite canonical basis
with respect to <, then a completion procedure with a fair strategy would generate a finite
canonical basis. )

Further, such a finite canonical basis is unique with respect to < if it is reduced (i.e., for
every polynomial in the basis, none of its monomials can be reduced using the remaining set of
polynomials in the basis).

A strategy is called fair if and only if all superpositions among all possible finite subsets of
rules are eventually considered. There can be many ways to generate superpositions and critical
pairs which would constitute a fair strategy. A simple fair strategy is to consider superpositions
in the degree ordering irrespective of the ordering < used for making rules from polynomials.

For the univariate case, the completion procedure always terminates.

Theorem 6.3: A k-subalgebra over k|z] always has a finite canonical basis which is gener-
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ated by the completion procedure.

Sketch of Proof: Suppose r polynomials with the degrees d,,...,d, are already generated
in a basis. There is a number bound(d;,---,d,) that is a multiple of d = ged(d;,- -, d.) such
that every multiple of d which is > bound(dy,---,d,) can be expressed as a nonnegative linear
combination of {d,:--,d,}. Since a polynomial will be added to the basis only if the degree of
its head-term cannot be expressed as a nonnegative linear combination of {d,,---,d,}, one can
only add to the basis, polynomials of degree < bound(dy,- - -,d,) or of degree d,,, which is not
a multiple of d. In the second case, the ged(dy, -+ ,d,,d,4;1) < d. O,

6.1 Examples

Example 1: Consider the example from Shannon and Sweedler [1988] which was discussed
earlier. The basis is F} = {1. 2%~ 2, 2. 2’} and the rules corresponding to the basis are:
Ry = {1. 2 = =z, 2. 2? - 0}. A critical pair can be obtained by solving the following
diophantine equation: ’

3d, +2d; = 3e; + 2e;.

The basis of the solutions to this equation is: < 2,0,0,3 >. The superposition is z° and the
critical pair is: < 224 - 22,0 >. The S-polynomial 2z* — z? reduces to 0. So, F is a canonical
basis. In contrast, Shannon and Sweedler’s approach using tagged variables will have to perform
more complex computations to get a Grobner basis involving tag variables.

Example 2: Let us consider an example given by Robbiano, F; = {=3,a%, 2 +2* + 2}. The
rules corresponding to them are:

Ri={l.2°—0, 2.2¢~0, 3.2~ —2?—z}.
Superpositions and critical pairs can be computed by setting up a diophantine equation:

3d,+4d1+5d3=3et+4e3+5e3,

A minimal basis for the solutions to the above equation is:

{<1,0,1,0,2,0 >,<0,1,1,3,0,0 >,< 0,0,2,2,1,0 >,< 4,0,0,0,3,0 >,< 5,0,0,0,0,3 >,
<1,3,0,0,0,3 >,<0,5,0,0,0,4 >}.

Corresponding to the first solution, the critical pair is obtained by a superposition generated by
the product of the left sides of rules 1 and 3 which is equal to the square of the left side of rule
2. The superposition is z®% and the critical pair is < z° + 24,0 >. The S-polynomial z° + 2*
can be reduced to its norms! form —z? ~ £. This means that the given basis is not a canonical
besis.

A canorical basis can be obtained however by augmenting the original basis with normal
forms of S-polynomials thus computed and repeating this process. So the superposition z® gives
an additional rule .

i 4.2 o -z, .

It is always better to use this rule to simplify the existing rules. Rule 2 gets simplified to z thus
giving v

2.z—0.
Rule 2’ deletes every other rule. As a result, we did not have to consider critical pairs generated
by the rules 1, 2, and 3, which got deleted. This is in contrast to having to consider all
superpositions generated from the basis solutions of the above diophantine equation which would
hiave resulted ih unnecessary computations.
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