John L. Kelley
Isaac Namioka

Linear
Topological
Spaces

Springer—Verlag
| New York Heidelberg Berlin
' . World Publishing Corporation Beijing China



Linear Topological
Spaces

John L. Kelley Isaac Namioka

and

W. F. Donoghue, Jr. G. Baley Price
Kenneth R. Lucas Wendy Robertson
B. J. Pettis W. R. Scott
Ebbe Thue Poulsen  Kennan T. Smith

Springer-Verlag New York Heidelberg Beriin
World Publishing Corporation, Beijing,China



John L. Kelley ;;_'_ Jsaac Namyoka .. -

VEEE B SERIRY TN g S BB L 2
Department of Mathematits ai)"epa?txﬁen&ofMatpMm
University of California University of Washington
Berkeley, California 94720 Seattle, Washington 98195 ,
Editorial Board
P. R. Halmos

Indiana University
Department of Mathematics
Swain Hall East
Bloomington, Indiana 47401

F. W. Gehring C. C. Moore

University of Michigan University of California at Berkeley
Department of Mathematics Department of Mathematics

Ann Arbor, Michigan 48104 Berkeley, California 94720

AMS Subject Classifications
46AXX

Library of Congress Cataloging in Publication Data
Kelley, John L.

Linear topological spaces.

(Graduate texts in mathematics; 36)

Reprint of the ed. published by Van Nostrand, Princeton, N.J., in series; The
University series in higher mathematics.

Bibliography: p.

Includes index. .

1. Linear topological spaces. I. Namioka, Isaac, joint author. I1. Title. I1I. Series.
QA322 K44 1976 514’3 75-41498
Second corrected printing
All rights reserved.

No part of this book may be translated or reproduced in any form without written
permission from Springer-Verlag.

© 1963 by J. L. Kelley and G. B. Price.

Originally published in the University Series in Higher Mathematics (D. Van
Nostrand Company); edited by M. H. Stone, L. Nirenberg and S. S. Chern.

Repuinted in China by World Publishing Corporation
For distribution and sale in the People’s Republic of China only
REBES £ AR mE£T

ISBN 0-387-90169-8 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90169-8 Springer-Verlag Berlin Heidelberg New York
ISBN 7-5062-0066-x World Publishing Corporation China -



FOREWORD

THIS BOOK IS A STUDY OF LINEAR TOPOLOGICAL SPACES. EXPLICITLY, WE
are concerned with a linear space endowed with a topology such that scalar
multiplication and addition are continuous, and we seek invariants relative
to the class of all topological isomorphisms. Thus, from our point of view,
it is incidental that the evaluation map of a normed linear space into its
second adjoint space is an isometry ; it is pertinent that this map is relatively
open. We study the geometry of a linear topological space for its own sake,
and not as an incidental to the study of mathematical objects which are
endowed with a more elaborate structure. This is not because the relation
of this theory to other notions is of no importance. On the contrary, any
discipline worthy of study must illuminate neighboring areas, and motiva-
tion for the study of a new concept may, in great part, lie in the clarification
and simplification of more familiar notions. As it turns out, the theory of
linear topological spaces provides a remarkable economy in discussion of
many classical mathematical problems, so that this theory may properly be
considered to be both a synthesis and an extension of older ideas.*

The text begins with an investigation of linear spaces (not endowed with
a topology). The structure here is simple, and complete invariants for a
space, a subspace, a linear function, and so on, are given in terms of cardinal
numbers. The geometry of convex sets is the first topic which is peculiar to
the theory of linear topological spaces. The fundamental propositions here
(the Hahn-Banach theorem, and the relation between orderings and corvex
cones) yield one of the three general methods which are available for attack
on linear topological space problems.

A few remarks on methodology will clarify this assertion. Our results
depend primarily on convexity arguments, on compactness arguments (for
example, Smulian’s compactness criterion and the Banach-Alaoglu theorem),
and on category results. The chief use of scalar multiplication is made in
convexity arguments; these serve to differentiate this theory from that of

* I am not enough of a scholar either to affirm or deny that all mathematics is both
a synthesis and an extension of older mathematics.
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topological groups. Compactness arguments—primarily applications of the
Tychonoff product theorem-—are important, but these follow a pattern
which is routine. Category arguments are used fer the most spectacular of
the results of the theory. It is noteworthy that these results depend essen-
tially on the Baire theorem for complete metric spaces and for compact
spaces. There are non-trivial extensions of certain theorems (notably the
Banach-Steinhaus theorem) to wider classes of spaces, but these extensions
are made essentially by observing that the desired property is preserved by
products, direct sums, and quotients. No form of the Baire theorem is
available save for the classical cases. In this respect, the role played by
completeness in the general theory is quite disappointing.

After establishing the geometric theorems on convexity we develop the
elementary theory of a linear topological space in Chapter 2. With the
exceptions of a few results, such as the criterion for normability, the
theorems of this chapter are specializations of well-known theorems on
topological groups, or even more generally, of uniform spaces. In other
words, little use'is made of scalar multiplication. The material is included
in order that the exposition be self-contained.

A brief chapter is devoted to the fundamental category theorems. The
simplicity and the power of these results justify this special treatment,
although full use of the category theorems occurs later.

The fourth chapter details results on convex subsets of linear topological
spaces and the closely related question of existence of continuous linear func-
tionals, the last material being essentially a preparation for the later chapter
on duality. The most powerful result of the chapter is the Krein-Milman
theorem on the existence of extreme points of a compact convex set. This
theore' 1 is one of the strongest of those propositions which depend on con-
vexity-compactness arguments, and it has far reaching consequences—for
example, the existence of sufficiently many irreducible unitary representa-
tions for an arbitrary locally compact group.

The fifth chapter is devoted to a study of the duality which is the central
part of the theory of linear topological spaces. The existence of a duality
depends on the existence of enough continuous linear functionals—a fact
which illuminates the role played by local convexity. Locally convex spaces
possess a large supply of continuous )inear tunctionals, and locally convex
topologies are precisely those which may be conveniently described in terms
of the adjoint space. Consequently, the duality theory, and in substance the
entire theory of linear topological spaces, applies primarily to locally convex
spaces. The pattern of the duality study is simple. We attempt to study
a space in terms of its adjoint, and we construct part of a “dictionary” of
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translations of concepts defined for 2 space, to concepts involving the adjoint.
For examblc, completeness of a space E is equivalent to the proposition t}'lat
each hyperplane in the adjoint E* is weak* closed whenever its intersection
with every equicontinuous set 4 is weak* closed in 4, and the topology of
E is the strongest possible having £* as the class of continuous’ linear func-
tionals provided each weak* compact convex subset of E is equicontinuous.
The situation is very definitely more complicated than in the case of a
Banach space. Three “pleasant” properties of a space can be used to classify
the type of structure. In order of increasing strength, these are: the topol-
ogy for E is the strongest having E* as adjoint (E is a Mackey space), the
evaluation map of E into E** is continuous (£ is evaluable), and a form of
the Banach-Steinhaus theorem holds for E (E is a barrelled space, or ton-
nelé). A complete metrizable locally convex space possesses all of these
properties, but an arbitrary linear topological space may fail to possess any
one of them. The class of all spaces possessing any one of these useful
properties is closed under formation of direct sums, products, and quotients.
However, the properties are not hereditary, in the sense that a closed sub-
space of a space with the property may fail to have the property. Complete-
ness, on the other hand, is preserved by the formation of direct sums and
products, and obviously is hereditary, but the quotient space derived from a
complete space may fail to be complete. The situation with respect to
semi-reflexiveness (the evaluation map carries E onto Exx) is similar. Thus
there is a dichotomy, and each of the useful properties of linear topological
‘spaces follows one of two dissimilar patterns with respect to ‘‘permanence”
properties.

Another type of duality suggests itself. A subset of a linear topological
space is called bounded if it is absorbed by each neighborhood of 0 (that
is, sufficiently large scalar multiples of any neighborhood of 0, contain the
set). We may consider dually a family 4 of sets which are to be con-
sidered as bounded, and construct the family # of all convex circled sets
which absorb members of the family #. TFhe family % defines a topology,
and this scheme sets up a duality (called an internal duality) between
possible topologies for E and possible families of bounded sets. ‘This in-
ternal duality is related in a simple fashion to the dual space theory.

The chapter on duality concludes with a discussion of metrizable spaces.
As might be expected, the theory of a metrizable locally convex space is
more nearly perfect than that of an arbitrary space and, in fact, most of
the major propositions concerning the internal structure of the dual of a
Banach space hold for the adjoint of a complete metrizable space. Count-
ability requirements are essential for many of these results. However, the
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structure of the second adjoint and the relation of this space to the first
adjoint is still complex, and many features appear pathological compared
to the classical Banach space theory.

The Appendix is intended as a bridge between the theory of linear topo-
logical spaces and that of ordered linear spaces. The elegant theorems of
Kakutani characterizing Bandth lattices which are of functional type, and
those which are of Lxtype, are the principal results. .

A final note on the preparation of this text: By fortuitous circumstance
the authors were able to spend the summer of 1953 together, and a complete
manuscript was prepared. We felt that this manuscript had many faults,
not the least being those inferred from the old adage that a camel is a horse
which was designed by a committee. Consequently, in the interest of a
more uniform style, the text was revised by two of us, I. Namioka and
myself. The problem lists were revised and drastically enlarged by Wendy
Robertson, who, by great good fortune, was able to join in our enterprise
two years ago.

J. L. K
Berkeley, California, 1961

Note on notation: The end of each proof is marked by-the symbol

I,
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Chapter 1

LINEAR SPACES

This chapter is devoted to the algebra and the geometry of linear
spaces; no topology for the space is assumed. It is shown that a
linear space is determined, to a linear isomorphism, by a single
cardinal number, and that subspaces and linear functions can be
described in equally simple terms. The structure theorems for
linear spaces are valid for spaces over an arbitrary field; however, we
are concerned only with real and complex linear spaces, and this
restriction makes the notion of convexity meaningful. This notion is
fundamental to the theory, and almost all of our results depend upon
propositions about convex sets. In this chapter, after establishing
connections between the geometry of convex sets and certain analytic
objects, the basic separation theorems are proved. These theorems
provide the foundation for linear analysis; their importance cannot
be overemphasized.

)
1 LINEAR SPACES

Each linear space is characterized, to a linear isomorphism, by a
cardinal number called its dimension. A subspace is characterized by
its dimension and its co-dimension. After these results have been
established, certain technical propositions on linear functions are
proved (for example, the induced map theorem, and the theorem
giving the relation between the linear functionals on a complex linear
space and the functionals on its real restriction). The section ends
with a number of definitions, each giving a method of constructing
new linear spaces from old.

A real (complex) linear space (also called a vector space or

a linear space over the real (respectively, complex) field) is a
1
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non-void set £ and two operations called addition and scalar m}xl-
tiplication. Addition is an operation @ which satisfies the following
axioms:
(1) For every pair of elements x and y in E, x @& y, called the sum
of x and y, is an element of E;
(i) addition is commutative: x @y = y @ x;
(i1) addition is associative: x @ (y @ 2) = (xDy) D=
(iv) there exists in E a unique element, 8, called the origin or the
(additive) zero element, such that for all xin E, x @ 6 = x;
and
~(v) to every x in E there corresponds a unique element, denoted
by —x, such that 2+ @ (—~a) = 4.
Scalar multiplication is an operation - which satisfies the following
axioms:

(vi) For every pair consisting of a real (complex) number a and
an element x in E, a-x, called the product of @ and «, is an
element of E;

(vii) multiplication is distributive with respect to addition in E:
a(x@y)=ax®Day;
(viii) multiplication is distributive with respect to the addition of
real (complex) numbers: (a + b)x =ax®b x;
(ix) multiplication is associative: a-(b-x) = (ab)-x;
(x) 1-x = x forall x in E.

From the axioms it follows that the set E with the operation
addition is an abelian group and that multiplication by a fixed scalar
is an endomorphism of this group.

In the axioms, + and juxtaposition denote respectively addition
and multiplication of real (complex) numbers. Because of the rela-
tions between the two kinds of addition and the two kinds of multi-
plication, no confusion results from the practice, to be followed
henceforth, of denoting both kinds of addition by + and both kinds
of multiplication by juxtaposition. Also, henceforth 0 denotes,
ambiguously, either zero or the additive zero element 6 of the abelian
group formed by the elements of E and addition. Furthermore, it is
Ccustomary to say simply “the linear space E” without reference to
the operations. The elements of a linear space E are called vectors.
The scalar field K of a real (complex) linear space is the field of real
(complex) numbers, and its elements are frequently called scalars.
The real (complex) field is itself a linear space under the convention
that vector addition is ordinary addition, and that scalar multiplication
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is ordinary multiplication in the field. If it is said that a linear space
E is the real (complex) field, it will always be understood that E is a
linear space in this sense.

Two linear spaces E and F are identical if and only if £ = F and
also the operations of addition and scalar multiplication are the same.
In particular, the real linear space obtained from a complex linear
space by restricting the domain of scalar multiplication to the real
numbers is distinct from the latter space. It is called the real
restriction of the complex linear space. It must be emphasized
that the real restriction of a complex linear space has the same set of
elements and the same operation of addition; moreover, scalar
multiplication in the complex space and its real restriction coincide
when both are defined. The only difference -but it is an important
difference—is that the domain of the scalar multiplication of the real
restriction is a proper subset of the domain of the original scalar
multiplication. The real restriction of the complex field is the two-
dimensional Euclidean space. (By definition, real (complex)
Euclidean 7-space is the space of all n-tuples of real {complex,
respectively) numbers, with addition and scalar multiplication
defined coordinatewise.) It may be observed that not every real
linear space is the real restriction of a complex linear space (for
example, one-dimensional real Euclidean space).

A subset A of a linear space E is (finitely) linearly independent
if and only if a finite linear combination S {ax,;:i = 1, - - -, n}, where
x; € A for each i and x; # x, for 7 # j, is 0 only when each g, is zero.
This is equivalent to requiring that each member of E which can be
written as a linear combination, with non-zero coefficients, of distinct
members of 4 have a unique such representation (the difference of
two distinct representations exhibits linear dependence of 4). A sub-
set B of E is a Hamel base for E if and only if cach non-zero element
of E is representable in a unique way as a finite linear combination
of distinct members of B, with non-zero coefficients. A Hamel base
is necessarily linearly independent, and the next theorem shows that
any linearly independent set can be expanded to give a Hamel base.

1.1 THEOREM Let E be a linear space. Then:

(1) Each linearly independent subset of E is contained in a maximal
linearly independent subset.

(1) Each maximal linearly independent subset is a Hamel base, and
conversely.

- (iil) Any two Hamel bases have the same cardinal number.



