SOFTWARE
ENGINEERING:

A
PRACTITIONER'S
APPROACH

ROGER S. PRESSMAN

SOFTWARE
ENGINEERING

A Practitioner’s Approach

Roger S. Pressman, ph.D.

Adjunct Professor of Computer Engineering
University of Bridgeport

and

President, R. S. Pressman & Associates, Inc.

McGraw-Hill Book Company

New York Si. Louis San Francisco Auckland Bogota Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris S3o Paulo Singapore Sydney Tokyo Toronto

This hook was set in Times Roman by World Compositior'x Services, Inc.
The editors were Charfes €. Stewact and Gail Gavert;

the production supervisor was Dominick Petrefizse.

New drawings were done by Fine Line llustrations, Inc.

R. R. Doannelley & Sons Company was printer and binder.

SOFTWARE ENGINEERING
A Practitioner’s Approach

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved.

Printed in the United States of America. Except as permitted under the Unied Siates
Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in 3 data base or retrigval system, without the
prior written permission of the publisher.

1134567890 DODO 898765432

ISBN 0-07-D50783-3

Library of Congress Cataloging in Publication Data

Pressman. Roger S.
Seftware engineering.

{McGraw-Hill software engineering and technology
series)
Includes bibliographies and index.
.. Elgetronic digital computers—Programming.
{. Title. N. Series.
QAT56.PT3 (001.64°2 §1-20718
1SBN 0-07-050781-3 AACR2

PREFACE

In the brief history of the electronic digital computer, the 1950s and 1960s were
decades of hardware. The 1970s were a period of transition and a time of
recognition of software. The decade of software is now upon us. In fact, advances
in computing may become limited by our inability to produce quality software that
can tap the enormous capacity of 1980-era processors.

During the past decade we have grown to recognize circumstances that are
collectively called the software crisis. Software costs escalated dramatically, be-
coming the largest dollar item in many computer-based systems. Schedules and
completion dates were set but rarely kept. Assoftware systems grew larger, quality
became suspect. Individuals responsible for software development projects had
limited historical data to use as guides and less control over the course of a project.

A set of techniques, collectively called software engineering, has evolved as a
response to the software crisis. These techniques deal with software as an engi-
neered product that requires planning, analysis, design, implementation, testing,
and maintenance. The goal of this text is to provide a concise presentation of each
step in the software engineering process.

The contents of this book closely parallel the software life cycle. Early
chapters present the planning phase, emphasizing system definition (computer
systems engineering), software planning, and software requirements analysis.
Specific techniques for software costs and schedule estimation should be of
particular interest to project managers as well as to technical practitioners and
students. i

In subsequent chapters emphasis shifts to the software development phase.
The fundamental principles of software design are introduced. In addition,
descriptions of two important classes of software design methodology are pre-
sented in detail. A variety of software tools are discussed. Comparisons among
techniques and among tools are provided to assist the practitioner and student
alike. Coding style is also stressed in the context of the software engineering
process. '

Xv

xvi PREFACE

The concluding chapters deal with software testing techniques, reliability, and
software maintenance. Software engineering steps associated with testing are
described and specific techniques for software testing are presented. The current
status of software reliability prediction is discussed and an overview of reliability
models and program correctness approaches is presented. The concluding chapter
considers both management and technical aspects of software maintenance.

This book is an outgrowth of a senior-level /first-year-graduate course in
software engineering offered at the University of Bridgeport. The course and this
text cover both management and technical aspects of the software development
process. The chapters of the text correspond roughly to major lecture topics. In
fact, the text is derived in part from edited versions of transcribed notes of these
lectures. Writing style is therefore purposely casual and figures are derived from
viewgraphs used during the course.

Software Engineering: A Practitioner's Approach may be used in a number of
ways for various audiences. The text can serve as a concise guide to software
engineering for the practicing manager, analyst, or programmer. It can also serve
as the basic text for an upper-level undergraduate or graduate course in software
engineering. Lastly, the text can be used as a supplementary guide for software
development early in computer science or computer engineering undergraduate
curricuia.

The software engineering literature has expanded rapidly during the past
decade. I gratefully acknowledge the many authors who have helped this new
discipline evolve. Their work has had an important influence on this book and my
method of presentation. I also wish to acknowledge Pat Duran, Leo Lambert, Kyu
Lee, John Musa, Claude Walston, Anthony Wasserman, Marvin Zelkowitz, and
Nicholas Zvegintzov, the reviewers of this book, and Peter Freeman, the series
editor. Their thoughtful insights and suggestions have been invaluable during the
final stages of preparation. Special thanks go to Leo Lambert and his colleagues
from the Computer Management Operation, General Electric Company, who have
allowed me to tap their broad collective experience during my long association
with them. In addition, to the students at the University of Bridgeport and the
hundreds of software professionals and their managers who have attended short
courses that [have taught, my thanks for the arguments, the ideas, and the
challenges that are essential in a field such as ours.

Finally, to B rbara, Mathew, and Michael, my love and thanks for tolerating
the genesis of book number two.

Roger S. Pressman

CONTENTS

Chapter

Chapter

2.1
2.2
23
24
2.5

Preface

Computer System Engineering

Computer System Evolution
Computer System Engineering
Hardware Considerations
1.3.1 Hardware Components
1.3.2 Hardware Applications
1.3.3 Hardware Engineering
Sofiware Considerations

{.4.1 Software Components
1.4.2 Sofiware Applications
1.4.3 Software Engineering
Summary

References

Probiems and Points to Ponder
Further Readings

The Software Crisis

The Problems

The Causes

Myths

A Solution

Summary

References

Problems and Points to Ponder
Further Readings

XV

~N W a N —

10
14
15
19
19
21
21

22

22
23
24
27
29
29
29
30

vii

viili CONTENTS

'Chapter 3

Chapter

(PSRN
b —

33

34
35
ie6
3.7

4.1
4.2
4.3
4.4

4.5

4.6

1.7
4.8

449
4.10

o

19 =

System Planning

The Planning Phase

System Definition

3.2.1 The Term *System™

3.2.2 System Definition Tasks
Svstem Analysis

3.3.1 A System Analysis Checklist
3,32 Feasibility Study '
3.3.3 Cost-Benefit Analysis
Function Allocation and Trade-Offs
The System Specification

System Definition Review
Summary

References

Problems and Points to Ponder
Further Readings

Software Planning

Observations on Estimating
Planning Objectives

Software Scope

Resources

44,1 Human Resources

4.4.2 Hardware

443 Software

Softwure Costing

4,51 The Costing Approach
4,5.2 Software Productivity Duta
Estimation Models

4.6.1 Resource Models

4.6.2. Putnam Estimation Model
4.6.3 Esterling Estimation Model
Lines-of-Code, Costing Technique
4.7.1 Costing Steps

4.7.2 An Example

Effort per Task Costing Technique
4.8.1 Costing Steps

4.8.2 An Example

Automated Costing

Scheduling

4.10,1 People-Work Relationships
4.10.2 The 40-20-40 Rule

4.10.3 Schedule Representation
4.10.4 Scheduling Methods
Organizational Planning

The Sofiware Plan

31

32
34
34
36
36
36
45
47
51
53
53
55
55
56

56

58

59
60
60
62
62
63
64
65
66
66
68
70
71
73
75
75
76
80
80
g1
82
&3
84
&5
&6
87
87
&9

Chapter

Chapter

4.13

5
5.1

5.3

5.4

5.6
5.7
5.8

5.9

6.3
6.4
6.5

6.6

Summary

References

Problems and Points to Ponder
Further Readings

Software Requirements Analysis

The Requirements Analysis Step
5.1.1 Analysis Tasks

5.1.2 The Analyst

Analysis—A Problem-Solving Approach
5.2.1 Fundamental System Model
Information Ftow

5.3.1 Data Flow Diagram

5.3.2 A Detailed Example

5.3.3 Guidelines and Comments
Information Structure

5.4.1 Classic Data Structures
5.4.2 Data Structure Representation
Database Requirements

5.5.1 Database Characteristics
5.5.2 Analysis Steps

5.5.3 An Analysis Tool

Software Requirements Specification
Specification Review

Requirements Analysis Tools

581 SADT

5.8.2 Automated Tools

Summary

References

Problems and Points to Ponder
Further Readings

The Software Design Process

The Development Phase
The Design Process
6.2.1 The Evolution of Software Design

6.2.2 Siepwise Refinement—A Top-Down Technique

6.2.3 Structured Programming

6.2.4 Data-Oriented Design Techniques
Preliminary Design—An Introduction
Detailed Design—An Introduction
Design Documentation

6.5.1 Documentation Outline

6.5.2 Documentation Content

Design Reviews

6.6.1 Cost-Benetit Considerations

6.6.2 Criteria for Dusign Reviews

CONTENTS X

90
90
91
93

94

94
95
97
98
98
99
101
102
104
105
106
107
11
1
I
13
t6
118
119
120
121
124
125
175
127

128
129
129
130
131
131
132
132
i33
133
133
135
' 136
136
138

X CONTENTS

6.7

6.8

Chapter 7

7.3

7.4
7.5

7.6
7.7

Chapter 8

8.2

8.3

8.4

8.3

8.6

. 8.7

Approaches to Design Review
6.7.1 Formal Reviews

6.7.2 Informal Reviews

6.7.3 Inspections

Summary

References

Problems and Points to Ponder
Further Readings

Software Concepts

Qualities of Good Software
Software Structure and Procedure
7.2.1 Structure

7.2.2 Structural Definitions
7.2.3 Software Procedure
Modularity

7.3.1 Abstraction

7.3.2 Information Hiding

7.3.3 Module Types

Module Independence

7.4.1 Cohesion

7.4.2 Coupling

Software Measurement -

7.5.1 Halstead’s Software Science
7.5.2 McCabe’s Complexity Measure
Design Heuristics

Summary

References

Problems and Points to Ponder
Further Readings '

Data Flow-Qriented Design

Design and Information Flow
8.1.1 Contributors

8.1.2 Areas of Application
Design Process Considerations
8.2.1 Trapsform Flow

8.2.2 Trdhsaction Flow
8.2.3 A Process Abstract
Transform Analysis

8.3.1 An Example

8.3.2 Design Steps
Transaction Analysis

8.4.1 An Example

8.4.2 Design Steps
Structural Building Blocks
Design Postprocessing
Design Optimization

140
140
141
142
143
144
144
145

147

147
148
148
150
151
151
154
156
157
158
158
161
164
164
168
169
174
174
175
176

178

178
179
179
179
180
180
181
182
182
183
192
192
193
197
200
201

8.8

Chapter 9

9.2
9.3

9.4

9.5
9.6

9.7

Chapter 10

10.1
10.2
10.3

104
10.5
10.6

10.7
10.8

Summury

References

Problems and Points to Ponder
Further Readings

Data Structure-Oriented Design

Design and Data Structure

9.1.1 Centributors

9.1.2 Arcas of Application

9.1.3 Data Structure versus Data Flow Techniques
Design Process Considerations

The Jackson Methodology

9.3.1 Data Structure Notation

9.3.2 Program Structure Derivation

9.3.3 Procedura! Representation

9.3.4 Supplementary Techniques

9.3.5 Summary—The Jackson Methodology
Logical Construction of Programs

9.4.1 The Warnier Diagram

9.4.2 LCP Design Approach

9.4.3 Detailed Organization

9.4.4 Complex Structures

9.4.5 Summary—Logical Construction of Programs
Data Design

A Comparison of Design Methodologies

9.6.1 One View on Design Methodologies

9.6.2 Additional Comments on Design Comparison
Summary

References

Problems and Points to Ponder

Further Readings

Detailed Design Tools

Teols fog Design
The Structured Constructs
Graphical Design Tools

10.3.1 Flowcharts

10.3.2 Box Diagrams

Decision Tables

1PO Charts

Program Design Language

10.6.1 A Typical Design Language
10.6.2 PDL Examples
Comparison of Design Tools
Summary

References

Problems and Points to Ponder
Further Readings

CONTENTS Xi

202
203
203
204

208

205
206
206
207
207
208
208
209
211
212
215
218
216
217
220
21
227
28
230
231
237
239 .
239
240
241

242
242
244
244
245
247
249
252
253
255

P

xii CONTENTS

Chapter 11

I
11.2

1.3

1.4

.S

1.6

Chapter 12

12.1
12.2
12.3

i2.4

12.5

12.6
12.7

Programming Languages and Coding

The Translation Process

Programming Language Characteristics
11.2.} A Psychological View

11.2.2 A Syntactic-Semantic Model
11.2.3 An Engineering View

11.24 Choosing a Language

11.2.5 Technical Characteristics of Programming Languages

Language Classes

11.3.1 Foundation Languages
11.3.2 Structured Languages
11.3.3 Specialized Languages
Coding Style

11.4.1 Code Documentation
{11.4.2 Data Declaration
11.4.3 Statement Construction
11.44 Input/Output
Efficiency

11.5.1 Code Efficiency

11.5.2 Memory Efficiency
11.5.3 Input/Qutput Efficiency
Summary

References

Problems and Points to Ponder
Further Readings

Software Testing and Reliability

Characteristics of Testing

12.1.1 Testing Objectives

{2.1.2 Test Information Flow

12.1.3 Black-Box versus White-Box Testing
12.1.4 Quality Assurance [ssues

Steps in Software Testing -

Unit Testing e

12.3.1 Unit Test Considerations <
12.3.2 Unit Test Procedures
Integration Testing

1241 Top-Down Integration

12.42 Bottom-Up Integration

12.4.3 Comments on Integration Testing
12.4.4 Integration Test Documentation
Validation Testing

12.5.1 Validation Test Criteria

12.5.2 Configuration Review

System Testing

Test Case Design

12.7.1 Logic Coverage

12.7.2 Equivalence Partitioning

266

266
267
267
270
270
272
273
274
275
276
277
278
278
281
282
283
284
284
285
285
286
286
287
288

289

290
290
291
292
293
295
296
296
298
298
299
300
301
302
303
304
304
305
305
305
306

12.8

12.9

12.10
12.11
12.12

Chapter 13

13.1
13.2

13.3

134

13.5

13.6

13.7

12.7.3 Boundary Value Analysis
12.7.4 Graphical Techniques

12.7.5 Summary of Techniques

The Art of Debugging

12.8.1 Psychological Considerations
12.8.2 Approaches to Debugging
Software Reliability

12.9.1 A Definition of Software Reliability
12.9.2 Reliability Models

12.9.3 Proof of Correctness
Automated Testing Tools
Management Issues

Summary

References

Problems and Points to Ponder
Further Readings

Software Maintenance

A Definition of Software Maintenance
Maintenance Characteristics

13.2.1 Structured versus Unstructured Maintenance
13.2.2 Maintenance Cost

13.2.3 Problems

Maintainability

13.3.1 Controlling Factors

13.3.2 Quantitative Measures

13.3.3 Reviews

Maintenance Tasks

15.4.1 A Maintenance Organization
13.4.2 Reporting

13.4.3 Flow of Events

13.4.4 Record Keeping

13.4.5 Evaiuation

Maintenance Side Effects

13.5.1 Coding Side Effects

13.5.2 Data Side Effects

13.5.3 Documentation Side Effects
Maintenance Issues

13.6.1 Maintaining “Alien Code”
13.6.2 Preventive Maintenance
13.6.3 A “Spare Parts” Strategy
Summary

References

Problems and Points to Ponder
Further Readings

Epilogue
Index

" CONTENTS xiii

307
307
31t
311
311
311
313
313
314
314
315
317
318
319
320
321

322

323
324
324
326
327
328
328
329
329
330
330
331
331
333
334
334
334
335
335
336
336
337
338
339
339
340
341

342
345

CHAPTER

ONE
COMPUTER SYSTEM ENGINEERING

Four hundred and fifty years ago Machiavelli said:

There is nothing more difficult to take in hand, more perilous to conduct or more
uncertain in its success, than to take the lead in the introduction of a new order of
things. . ..

In the decade of the 1980s computer-based systems will introduce a new order.
Although technology has made great strides since Machiavelli spoke, his words
continue to ring true.

Software engineering—the topic to which this book is dedicated—and hard-
ware engineering are activities within the broader category that we shall call
computer system engineering. Each of these disciplines represents an attempt to
bring order to the development of computer-based systems,

Engineering techniques for computer hardware developed from electronic
design and have reached a state of relative maturity in little more than threc
decades. Hardware design techniques are well established, manufacturing methods
are continually improved, and reliability is a realistic expectation, rather thun a
modest hope.

Unfortunately, computer software still suffers from the Machiavellian descrip-
tion stated above. In computer-based systems software has replaced hardware as
the system element that is most difficult to plan, least likely to succeed (on time and
within cost), and most dangerous to manage. Yet the demand for software

1

2 CHAPTER ONE ,

continues unabated as computer-based systems grow in number, complexity, and
application.

Engineering techniques for ccmputer software have only recently gained
widespread acceptance. During the 1950s and 1960s computer programming was
viewed as an art. No engineering prec~adent existed, and no engineering approach
was applied.

Times are changing!

1.1 COMPUTER SYSTEM EVOLUTION

The context in which software has been developed is closely coupled to three
decades of computer system evolution. Better hardware performance, smaller size,
and lower cost have precipitated more sophisticated systems. In three and one-
half machine generations we’ve moved from vacuum tube processors to microelec-
tronic devices. In recent popular books on “‘the computer revolution,” Osborne
{1} has characierized the 1980s as a ‘“‘new industrial revolution” and Toffler [2]
calls the advent of microelectronics part of “the third wave of change” in human
history.

Figure 1.1 depicts the evolution of computer-based systems in terms of
application area, rather than hardware characteristics. During the early years of
computer system development, hardware underwent continual change while soft-
ware was viewed by many 2» an afterthought. Computer programming was a
**seat-of-the-pants™ art for which few systematic methods existed. Software devel-
opment was virtually unmanaged—until schedules slipped or costs began to
escalate. During this pericd a batch orientation was used for most systems.
Notable exceptions were interactive systems such as the early American Airlines
reservation system and real-time defense-oriented systems such as SAGE. For the
most part, however, hardware was dedicated to the execution of a single program
that in turn was dedicated to a specific application.

During the early years general-purpose hardware became commonplace.
Software, on the other hand, was custom designed for each application and had a
relatively limited distribution.

How have computer systems evolved?

The 2d era
® Multiuser The 3d era
The early years : g:‘:;:?j ¢ Distributed systems

® Embedded “intelligence™
¢ Low cost hardware

® Batch orientation

PR A . L
¢ Limited distribution Product software

® Custom software ““ T ¢ Consumer impact
1950 1960 1970 1930 1990

Figure 1.1

COMPUTER SYSTEM ENGINEERING 3

Product software (i.e., programs developed to be sold to one or more cus-
tomers) was in its infancy. Most software was developed and ultimately used by
the same person or organization. You wrote it, you got it running, and if it failed,
you fixed it. Because job mobility was low, managers could rest assured that you’d
be there when bugs were encountered. Because of this personalized software
environment, design was an implicit process performed in one’s head and docu-
mentation was often nonexistent.

During the early years we learned much about the implementation of com-
puter-based systems, but relatively little about computer system engineering. In
fairness, however, we must acknowledge the many outstanding computer-based
systems that were developed during this era. Some of these systems remain in use
today and provide landmark achievements that continue to justify admiration,

The second era of computer system evolution (Figure 1.1) spanned the decade

from the mid-1960s to the mid-1970s. Multiprogramming, multiuser systems
introduced new concepts of human-machine interaction. Interactive technigues
opened a new world of applications and new levels of hardware and software
sophistication. Real-time systems could collect, analyze, and transform data from
multiple sources, thereby controlling processes and producing output in milli-
seconds rather than minutes. Advancesin on-line secondary memory devices lead
_ to the first generation of database management systems.
' The second era was also characterized by the use of product software and the
advent of “software houses.” Software was developed for widespread distribution
in a multidisciplinary market. Entrepreneurs from industry, government, and
academia broke away to ‘‘develop the ultimate software package™ and earn a
bundle of money.

As the number of computer-based systems grew, libraries of computer soft-
ware began to expand. In-house-developed projects produced tens of thousands of
program source statements. Software products purchased from the outside added
hundreds of thousands of new statements. A dark cloud appeared on the horizon.
All of these programs—all of these source statements—had to be maintained when
faults were detected, modified as user requirements changed, or adapted to new
hardware that was purchased. Effort spent on software maintenance began to
absorb resources at an alarming rate. Worse yet, the personalized nature of many
programs made them virtually unmaintainable. A “‘software crisis” had begun.

The third era of computer system evolution began in the early 1970s and
continues through the early 1980s. The distributed system—multiple computers,
each performing functions concurrently and communicating with one another—
greatly increased the complexity of computer-based sysiems. As microprocessors
and related components became more powerful and less expensive, products with
“embedded intelligence” replaced larger computers as the most common computer
application area.

In addition, the advent of microprocessors has resulted in the availability of |
complex logical functions at exceptionally low cost. This technology is being
integrated into products by technical staff"who understand hardware but are
frequently novices where software is considered.

4 CHAPTER ONE

Rapid advances in hardware have already begun to outpace our ability to
provide supporting software. During the third era, the software crisis intensified.
Software maintenance absorbed over 50 percent of data processing budgets, and
software development productivity could not keep pace with demands for new
systems. In response to a growing crisis, software engineering was taken seriously
for the first time, .

A transition to a fourth era of computer system evolution has already begun.
Sixteen- and 32-bit microprocessors with one megabyte of primary memory will
open as yet unforeseen application areas for computer-based systems. The transi-
tion from a technical to a consumer marketplace demands professionalism that
can be accomplished only through computer system engineering.

1.2 COMPUTER SYSTEM ENGINEERING

Computer system engineering is a problem.solving activity. Desired system func-
tions are uncovered, analyzed, and allocated to individual system elements. An
overview of the computer system engineering process is illustrated in Figure 1.2,
Techniques for system analysis and definition are discussed in detail in Chapter 3.

The genesis of most new systems begins with a rather nebulous concept of
desired function. The objective of system analysis and definition is to uncover the
scope of the project that lies ahead. This is accomplished by a systematic refine-
ment of information to be processed, required functions, desired performance,
design constraints, and validation criteria. -

After scope has been established, the computer system engineer must consider
a number of alternative configurations that could potentially satisfy scope. The
following trade-off criteria govern the selection of a system configuration:

1. Business considerations. Does the configuration represent the most profitable
solution? Can it be marketed successfully? Will ultimate payoff justify devel-
opment risk?

Computer System Engineering

System analysis
and definition

Hardware Software
engineering engincering

Figure 1.2

COMPUTER SYSTEM ENGINEERING §

2. Technical analysis. Does the technology exist to develop all elements of the
system? Are function and performance assured? Can the configuration be
adequately mantained? Do technical resources exist? What is the risk associ-
ated with the technology?

3. Manufacturing evaluation. Are manufacturing facilities and equipment avail-
able? Is there a shortage of necessary components? Can quality assurance be
adequately performed?

4. Human problems. Are trained personnel available for development and man-
ufacture? Do political problems exist? Does the requester understand what
the system is to accomplish?

5. Environmental interfaces. Does the proposed configuration properly interface
with the system’s external environment? Are machine-machine and human-.
machine communication handled in an intelligent manner?

6. Legal considerations. Does this configuration introduce undue liability risk?
Can proprietary aspects be adequately protected? Is there potential infringe-
ment?

The weight of the above criteria vary with each system.,

After trade-offs have been considered, a configuration is selected and functions
allocated among potential system elements. For a computer-based system, hard-
ware, firmware, and software are the elements most likely to be selected.

1.3 HARDWARE CONSIDERATION>S

Computer system engineering always allocates one or more system functions to
computer hardware. In the following paragraphs basic hardware components and
applications are discussed. In addition, an overview of hardware engineering is
presented. . -

1.3.1 Hardware Components

The computer system engineer selects some combination of hardware components
that comprise one element of the computer-based system. Hardware selection,
although by no means simple, is aided by a number of characteristics: (1) compo-
nents are packaged as individual building blocks; (2) interfaces among components
are standardized; (3) numerous “‘off-the-shelf”’ alternatives are-available; and (4)
performance, cost, and availability are relatively easy to determine.

The hardware configuration evolves from the *building blocks” shown in
[Figure 1.3. Discrete components (i.c., integrated circuits and electronic compo-
nents such asresistors and capacitors) are assembled as a printed circuit board that
performs a specific set of operations. Boards are interconnected to form system
components (e.g., processor and memory) that in turn are integrated to become
the hardware subsystem or the hardware system element,

A ‘complete discussion of the hardware configuration is beyond the scope of

