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PREFACE

In the brief history of the electronic digital computer, the 1950s and 1960s were
decades of hardware. The 1970s were a period of transition and a time of
recognition of software. The decade of software is now upon us. In fact, advances
in computing may become limited by our inability to produce quality software that
can tap the enormous capacity of 1980-era processors.

During the past decade we have grown to recognize circumstances that are
collectively called the software crisis. Software costs escalated dramatically, be-
coming the largest dollar item in many computer-based systems. Schedules and
completion dates were set but rarely kept. Assoftware systems grew larger, quality
became suspect. Individuals responsible for software development projects had
limited historical data to use as guides and less control over the course of a project.

A set of techniques, collectively called software engineering, has evolved as a
response to the software crisis. These techniques deal with software as an engi-
neered product that requires planning, analysis, design, implementation, testing,
and maintenance. The goal of this text is to provide a concise presentation of each
step in the software engineering process.

The contents of this book closely parallel the software life cycle. Early
chapters present the planning phase, emphasizing system definition (computer
systems engineering), software planning, and software requirements analysis.
Specific techniques for software costs and schedule estimation should be of
particular interest to project managers as well as to technical practitioners and
students. i

In subsequent chapters emphasis shifts to the software development phase.
The fundamental principles of software design are introduced. In addition,
descriptions of two important classes of software design methodology are pre-
sented in detail. A variety of software tools are discussed. Comparisons among
techniques and among tools are provided to assist the practitioner and student
alike. Coding style is also stressed in the context of the software engineering
process. '
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The concluding chapters deal with software testing techniques, reliability, and
software maintenance. Software engineering steps associated with testing are
described and specific techniques for software testing are presented. The current
status of software reliability prediction is discussed and an overview of reliability
models and program correctness approaches is presented. The concluding chapter
considers both management and technical aspects of software maintenance.

This book is an outgrowth of a senior-level /first-year-graduate course in
software engineering offered at the University of Bridgeport. The course and this
text cover both management and technical aspects of the software development
process. The chapters of the text correspond roughly to major lecture topics. In
fact, the text is derived in part from edited versions of transcribed notes of these
lectures. Writing style is therefore purposely casual and figures are derived from
viewgraphs used during the course.

Software Engineering: A Practitioner's Approach may be used in a number of
ways for various audiences. The text can serve as a concise guide to software
engineering for the practicing manager, analyst, or programmer. It can also serve
as the basic text for an upper-level undergraduate or graduate course in software
engineering. Lastly, the text can be used as a supplementary guide for software
development early in computer science or computer engineering undergraduate
curricuia.

The software engineering literature has expanded rapidly during the past
decade. I gratefully acknowledge the many authors who have helped this new
discipline evolve. Their work has had an important influence on this book and my
method of presentation. I also wish to acknowledge Pat Duran, Leo Lambert, Kyu
Lee, John Musa, Claude Walston, Anthony Wasserman, Marvin Zelkowitz, and
Nicholas Zvegintzov, the reviewers of this book, and Peter Freeman, the series
editor. Their thoughtful insights and suggestions have been invaluable during the
final stages of preparation. Special thanks go to Leo Lambert and his colleagues
from the Computer Management Operation, General Electric Company, who have
allowed me to tap their broad collective experience during my long association
with them. In addition, to the students at the University of Bridgeport and the
hundreds of software professionals and their managers who have attended short
courses that [ have taught, my thanks for the arguments, the ideas, and the
challenges that are essential in a field such as ours.

Finally, to B rbara, Mathew, and Michael, my love and thanks for tolerating
the genesis of book number two.

Roger S. Pressman
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CHAPTER

ONE
COMPUTER SYSTEM ENGINEERING

Four hundred and fifty years ago Machiavelli said:

There is nothing more difficult to take in hand, more perilous to conduct or more
uncertain in its success, than to take the lead in the introduction of a new order of
things. . ..

In the decade of the 1980s computer-based systems will introduce a new order.
Although technology has made great strides since Machiavelli spoke, his words
continue to ring true.

Software engineering—the topic to which this book is dedicated—and hard-
ware engineering are activities within the broader category that we shall call
computer system engineering. Each of these disciplines represents an attempt to
bring order to the development of computer-based systems,

Engineering techniques for computer hardware developed from electronic
design and have reached a state of relative maturity in little more than threc
decades. Hardware design techniques are well established, manufacturing methods
are continually improved, and reliability is a realistic expectation, rather thun a
modest hope.

Unfortunately, computer software still suffers from the Machiavellian descrip-
tion stated above. In computer-based systems software has replaced hardware as
the system element that is most difficult to plan, least likely to succeed (on time and
within cost), and most dangerous to manage. Yet the demand for software

1



2 CHAPTER ONE ,

continues unabated as computer-based systems grow in number, complexity, and
application.

Engineering techniques for ccmputer software have only recently gained
widespread acceptance. During the 1950s and 1960s computer programming was
viewed as an art. No engineering prec~adent existed, and no engineering approach
was applied.

Times are changing!

1.1 COMPUTER SYSTEM EVOLUTION

The context in which software has been developed is closely coupled to three
decades of computer system evolution. Better hardware performance, smaller size,
and lower cost have precipitated more sophisticated systems. In three and one-
half machine generations we’ve moved from vacuum tube processors to microelec-
tronic devices. In recent popular books on “‘the computer revolution,” Osborne
{1} has characierized the 1980s as a ‘“‘new industrial revolution” and Toffler [2]
calls the advent of microelectronics part of “the third wave of change” in human
history.

Figure 1.1 depicts the evolution of computer-based systems in terms of
application area, rather than hardware characteristics. During the early years of
computer system development, hardware underwent continual change while soft-
ware was viewed by many 2» an afterthought. Computer programming was a
**seat-of-the-pants™ art for which few systematic methods existed. Software devel-
opment was virtually unmanaged—until schedules slipped or costs began to
escalate. During this pericd a batch orientation was used for most systems.
Notable exceptions were interactive systems such as the early American Airlines
reservation system and real-time defense-oriented systems such as SAGE. For the
most part, however, hardware was dedicated to the execution of a single program
that in turn was dedicated to a specific application.

During the early years general-purpose hardware became commonplace.
Software, on the other hand, was custom designed for each application and had a
relatively limited distribution.

How have computer systems evolved?

The 2d era
® Multiuser The 3d era
The early years : g:‘:;:?j ¢ Distributed systems

® Embedded “intelligence™
¢ Low cost hardware

® Batch orientation

PR A . L
¢ Limited distribution Product software

® Custom software ““ T ¢ Consumer impact
1950 1960 1970 1930 1990

Figure 1.1



COMPUTER SYSTEM ENGINEERING 3

Product software (i.e., programs developed to be sold to one or more cus-
tomers) was in its infancy. Most software was developed and ultimately used by
the same person or organization. You wrote it, you got it running, and if it failed,
you fixed it. Because job mobility was low, managers could rest assured that you’d
be there when bugs were encountered. Because of this personalized software
environment, design was an implicit process performed in one’s head and docu-
mentation was often nonexistent.

During the early years we learned much about the implementation of com-
puter-based systems, but relatively little about computer system engineering. In
fairness, however, we must acknowledge the many outstanding computer-based
systems that were developed during this era. Some of these systems remain in use
today and provide landmark achievements that continue to justify admiration,

The second era of computer system evolution (Figure 1.1) spanned the decade

from the mid-1960s to the mid-1970s. Multiprogramming, multiuser systems
introduced new concepts of human-machine interaction. Interactive technigues
opened a new world of applications and new levels of hardware and software
sophistication. Real-time systems could collect, analyze, and transform data from
multiple sources, thereby controlling processes and producing output in milli-
seconds rather than minutes. Advancesin on-line secondary memory devices lead
_ to the first generation of database management systems.
' The second era was also characterized by the use of product software and the
advent of “software houses.” Software was developed for widespread distribution
in a multidisciplinary market. Entrepreneurs from industry, government, and
academia broke away to ‘‘develop the ultimate software package™ and earn a
bundle of money.

As the number of computer-based systems grew, libraries of computer soft-
ware began to expand. In-house-developed projects produced tens of thousands of
program source statements. Software products purchased from the outside added
hundreds of thousands of new statements. A dark cloud appeared on the horizon.
All of these programs—all of these source statements—had to be maintained when
faults were detected, modified as user requirements changed, or adapted to new
hardware that was purchased. Effort spent on software maintenance began to
absorb resources at an alarming rate. Worse yet, the personalized nature of many
programs made them virtually unmaintainable. A “‘software crisis” had begun.

The third era of computer system evolution began in the early 1970s and
continues through the early 1980s. The distributed system—multiple computers,
each performing functions concurrently and communicating with one another—
greatly increased the complexity of computer-based sysiems. As microprocessors
and related components became more powerful and less expensive, products with
“embedded intelligence” replaced larger computers as the most common computer
application area.

In addition, the advent of microprocessors has resulted in the availability of |
complex logical functions at exceptionally low cost. This technology is being
integrated into products by technical staff"who understand hardware but are
frequently novices where software is considered.



4 CHAPTER ONE

Rapid advances in hardware have already begun to outpace our ability to
provide supporting software. During the third era, the software crisis intensified.
Software maintenance absorbed over 50 percent of data processing budgets, and
software development productivity could not keep pace with demands for new
systems. In response to a growing crisis, software engineering was taken seriously
for the first time, .

A transition to a fourth era of computer system evolution has already begun.
Sixteen- and 32-bit microprocessors with one megabyte of primary memory will
open as yet unforeseen application areas for computer-based systems. The transi-
tion from a technical to a consumer marketplace demands professionalism that
can be accomplished only through computer system engineering.

1.2 COMPUTER SYSTEM ENGINEERING

Computer system engineering is a problem.solving activity. Desired system func-
tions are uncovered, analyzed, and allocated to individual system elements. An
overview of the computer system engineering process is illustrated in Figure 1.2,
Techniques for system analysis and definition are discussed in detail in Chapter 3.

The genesis of most new systems begins with a rather nebulous concept of
desired function. The objective of system analysis and definition is to uncover the
scope of the project that lies ahead. This is accomplished by a systematic refine-
ment of information to be processed, required functions, desired performance,
design constraints, and validation criteria. -

After scope has been established, the computer system engineer must consider
a number of alternative configurations that could potentially satisfy scope. The
following trade-off criteria govern the selection of a system configuration:

1. Business considerations. Does the configuration represent the most profitable
solution? Can it be marketed successfully? Will ultimate payoff justify devel-
opment risk?

Computer System Engineering

System analysis
and definition

Hardware Software
engineering engincering

Figure 1.2
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2. Technical analysis. Does the technology exist to develop all elements of the
system? Are function and performance assured? Can the configuration be
adequately mantained? Do technical resources exist? What is the risk associ-
ated with the technology?

3. Manufacturing evaluation. Are manufacturing facilities and equipment avail-
able? Is there a shortage of necessary components? Can quality assurance be
adequately performed?

4. Human problems. Are trained personnel available for development and man-
ufacture? Do political problems exist? Does the requester understand what
the system is to accomplish?

5. Environmental interfaces. Does the proposed configuration properly interface
with the system’s external environment? Are machine-machine and human-.
machine communication handled in an intelligent manner?

6. Legal considerations. Does this configuration introduce undue liability risk?
Can proprietary aspects be adequately protected? Is there potential infringe-
ment?

The weight of the above criteria vary with each system.,

After trade-offs have been considered, a configuration is selected and functions
allocated among potential system elements. For a computer-based system, hard-
ware, firmware, and software are the elements most likely to be selected.

1.3 HARDWARE CONSIDERATION>S

Computer system engineering always allocates one or more system functions to
computer hardware. In the following paragraphs basic hardware components and
applications are discussed. In addition, an overview of hardware engineering is
presented. . -

1.3.1 Hardware Components

The computer system engineer selects some combination of hardware components
that comprise one element of the computer-based system. Hardware selection,
although by no means simple, is aided by a number of characteristics: (1) compo-
nents are packaged as individual building blocks; (2) interfaces among components
are standardized; (3) numerous “‘off-the-shelf”’ alternatives are-available; and (4)
performance, cost, and availability are relatively easy to determine.

The hardware configuration evolves from the *building blocks” shown in
[Figure 1.3. Discrete components (i.c., integrated circuits and electronic compo-
nents such asresistors and capacitors) are assembled as a printed circuit board that
performs a specific set of operations. Boards are interconnected to form system
components (e.g., processor and memory) that in turn are integrated to become
the hardware subsystem or the hardware system element,

A ‘complete discussion of the hardware configuration is beyond the scope of



