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PREFACE

THE purpose of this monograph is to treat systematically and in depth
that portion of classical thermodynamics which has to do with the properties
of vapor and liquid scolutions of non-electrolytes. This area has perhaps
been too much neglected during the past several decades, with interest
diverted to the developments of statistical thermodynamics, statistical
- mechanics, and molecular theory. However, such considerations are in no
sense substitutes for classical thermodynamics, but are rather adjuncts
through which one hopes to obtain added and perhaps more fundamental
information.

The profound work of J. Willard Gibbs and the later contributions
by G. N. Lewis and others put the classical thermodynamics of solutions
on a firm base. Subsequent development has added to the structure, but
it is even now by no means complete.

It should be remarked at the outset that this monograph is written from
the viewpoint of an engineer. The ultimate aim of application to engineering
problems has therefore had a vital influence on the content. To the engineer,
thermodynamics has two faces. First is its application to the solution of
practical problems from data at hand, and second is the calculation of the
requisite data from experimental measurements. We shall be concerned
here only with the latter. Many excellent texts are already available to peint
the way to the solution of engineering problems once the necessary data
are available. But the general methods of developing such data from experi-
mental measurements are not so well documented.

It is assumed that the reader is already well versed in the basic principles
of classical thermodynamics. Nevertheless, an initial chapter on basic prin-
ciples has been included for review purposes and as a summary. While
disclaiming here any intention of writing a general textbook on advanced
thermodynamics, I would not wish to deny the appropriateness of this material
in advanced courses. This monograph has in fact been prepared from my
notes for one term of a two-term course in thermodynamics for advanced
students in chemical engineering. ‘

This work is in no sense a record of the historical development of the
thermodynamics of solutions, nor is it a compilation of pertinent material
from the literature. It merely represents my own efforts to develop the known
theory through concise dgrivation of the most general equations applicable
to fluid systems. A knowledge of this material is usually assumed on the
part of the reader by authors of works on statistical thermodynamics and
molecular theory. Yet a convenient source from which to study it in depth
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is not available, It is with the hope of satisfying this need that this mono-
graph is written.

Where experimental data are not available to allow the accurate calcu-
lation of thermodynamic properties by the equations developed here, the
engineer must .have recourse to the various theoretical, semi-theoretical,
and empirical correlations of thermodynamic data available. Although the
existence of such correlations has been indicated from place to place, no
attempt has begn made to describe them in detail and no effort has been
made to present a complete catalogue of them. In this regard there is no
substitute for a familiarity with current literature. The general equations
themselves are independent of such correlations, and remain valid as im-
provements are made to existing correlations. )

Most of the material presented in this monograph was developed for
courses of lectures to advanced students of chemical engineering. Some
of it was first presented during 1958-1959 in England at King’s College
of the University of Durham and at the Houldsworth School of Applied
Science of Leeds University. The opportunity provided by a Fulbright Grant
to give attention to this subject while lecturing abroad is much appreciated.
In addition, the support provided by the National Science Foundation for
research in this area under my supervision has provided a stimulus for
much concerted effort, and is gratefully acknowledged.

The constructive criticism of Professor J. M. Prausnitz, who reviewed
the original version of this work, provided invaluable aid in the revision of
the manuscript. Professor R.V.Mrazek not only made many useful
suggestions but also wrote the computer programs and did many of the
calculations upon which the numerical examples of this monograph are
based. Finally, I would express my indebtedness to those students who
by question and comment have contributed in no small measure to the
final form of this monograph.
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CHAPTER 1

FUNDAMENTAL BASIS
OF THERMODYNAMICS

CLassICAL thermodynamics is a network of equations, developed through
the formal logic of mathematics from a very few fundamental postulates
and leading to a great variety of useful deductions. In the sense that mathe-
matics is an exact system of logic, thermodynamics is an exact science.
However, as with any deductive procedure, the derived conclusions are
conditioned by the limitations imposed by the fundamental postulates and
depend for validity upon the truth of these postulates within the imposed
limitations. One might trace the historical development of the concepts
necessary to the formulation of the fundamental postulates, but this does
not seem appropriate to our purposes. Rather, we take advantage of the
considerable benefits of hindsight, and present these concepts in such a
way that they lead most directly to the basic postulates of classical thermo-
dynamics. (

1.1. The Nature of a Function. A variable F is said to be a function
of x and y, i.e., F = f(x, ), if for every pair of values (x, y) there exists
a value for F. An equation connecting F with x and y may or may not be
known. The functional relationship may equally well be given graphically,
for the nature of a function F = f(x, y) is obviously such that a definite
value of the function F is associated with each point on a y — x plane.}
The simplest means of representation is to show lines of constant F on a
y — x plot, as illustrated in Fig. 1-1. For a given point (x,, y,) there is
a particular-value of F, namely F,, and for another point (x,, y,) there is
also a particular value of F, namely F,. For a change in the variables x
and y from (x,, y;) to (x;, ), no matter how accomplished, there is a
particular change in F, given by AF = F, — F,. This constancy of 4F
for a pair of points 1 and 2, regardless of the path connecting these points
on a y — x plane, is a distinguishing characteristic which marks F as a
function of x and y even though an equation relating F to x and y is not
known.

T F may, of course, be a function of more than two independent variables. Although
this renders graphical representation more difficult, the general nature of a function
is the same regardless of the number of variables it depends on.
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2 THERMODYNAMICS OF NON-ELECTROLYTE SOLUTIONS

A simple example is evident if we regard Fig. 1-1 as a contour map.
F then represents elevation, and x and y are the position coordinates.
Clearly, if one travels from position 1 to position 2, the net change in ele-
vation A F is independent of the path taken. This immediately marks the
elevation F as a function of the position coordinates x and y. '

LINES OF CONSTANT F

y2

y] hhhhhhhhh

FiG. 1-1. F represented as a function of x and y.

We recognize the functional dependence of elevation on the position
coordinates through experience. If we were interested in mathematics only,
we could write a limitless number of equations expressing F as various
functions of x and y, or alternatively we could draw an indefinite number
of “contour maps” giving similar arbitrary relationships, and we might
study their properties. But the problem of science and technology is to
detect characteristics of our material world which are expressible as func-
tions of measurable variables and to express these functional relationships
in graphical, tabular, or equation form. The characteristic of elevation
above a datum (sea level) is easily recognized, and has long been expressed
as a function of position coordinates by means of contour maps.

1.2. Properties of Simple Systems. In the field of classical thermodynamics
we are concerned with the macroscopic properties of matter and their
relation to the measurable conditions of temperature, pressure, and com-
position. Experimentation with various materials leads us to believe that
there is a large class of homogeneous fluids (both liquid and gas) whose
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properties depend solely on these variables. We could observe, for example,
that the density of pure liquid acetone is constant for a given temperature
and pressure, regardless of the past history of the experimental sample.
Similarly, we would find the specific' volume of an equimolal mixture of
gaseous oxygen and nitrogen to be fixed for a given temperature'and
pressure. Were we to change the temperature or pressure, or both, of these
materials, we would find a fixed change in their properties, regardless of
how the change was accomplished. These observations are quite general
for single-phase fluids.

However, we might well note that in setting up our experiments we may
well have eliminated the effects of certain extraneous influences. In all
probability we would not carry out our experiments in the presence of a
strong magnetic or electrostatic field. Our samples of material would be
small enough so that the effect of the earth’s gravitational field would not
be detected in a variation of properties from top to bottom of the sample.
The sample would be stationary, not subject to shear stresses, and samples
would not be subdivided into small droplets or bubbles that would make
surface-tension effects important. We would undoubtedly deal, quite natur-
ally, with what have been called simple systems, and our equations would
then be written to apply to fluids as they exist in such simple systems.
In practice, these equations are often applied in cases where extraneous
influences are not entirely absent but where their effect is considered to
be negligible.

This discussion has been preliminary to the statement of our first funda-
mental postulate, which is that the macroscopic propertiest of homogeneous
Sfluids can be expressed as functions of temperature, pressure, and composition
only. One must keep in mind that this is a postulate which contributes
to the basis upon which our network of equations is founded, and is not
an absolute law of nature. Thus the ensuing equations are restricted to
applications where this postulate is essentially valid, i.e., to simple systems.

1.3. The Special Functions gf Thermodynamics. We have taken temper-
ature, pressure, and composition as basic thermodynamic variables for
homogeneous fluids. These are not regarded primarily as properties of
fluids but as conditions imposed on them, or manifested by them by virtue
of their direct measurability. What are the properties that we recognize

T The simple term property as applied to a homogeneous material (here, a fluid) should
not be ambiguous. It must obviously be independent of the amount of material; otherwise
it would not be a property of the material. Specific or molal volume is such a property.
Were we to speak of properties of a system, we would find it necessary to take into account -
the extent of the system. The total volume of a system is a property of the system, not
of -the material which constitutes it. Thus the common terms, intensive and extensive
property, refer respectively to a material and to a system. Properties of systems generally
depend not only on temperature, pressure, and compositions of the phases, but also on
the extent of the phases.
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as being functions of temperature, pressure, and composition? Specific or
molal volume is certainly one; we know this from experience. For any
homogeneous fluid of constant composition and existing as a simple system

we can write:
V = v(T, P).

We know this functional relationship to exist, but its expression for a given
material by means of a table, a graph, or an equation must be based on
careful experimental measurements.

What other functions of constant-composition, homogeneous fluids can
be expressed in terms of temperature and pressure? We could define arbi-
trarily any number of functions of T and P. For example, we might define
a function X as

3p?

X _ —V-T_ .

We could give this function a name; call it Xtropy. We could show lines of
constant Xtropy on a T — P plane for the given material. We could compute
the values of 4 X for the material which would result from given changes
in T and P. The function X would satisfy all the mathematical requirements
of a property of the material. But from the scientific, as opposed to the
purely mathematical point of view, is X to be regarded as a useful property
of the material? The scientist or engineer requires an affirmative answer
to one or both of the following questions:

(a) Is X directly measurable, like specific volume, and thus capable of
adding to our experimental knowledge of the material?

(b) Is X an essential function in that some generalization can be made
concerning it which allows the prediction of the behavior of material sys-
tems? For example, are there common processes which occur at constant
Xtropy? Since X was arbitrarily defined, the answer to both questions is
probably negative, and we are unlikely to consider the function X a useful
property of the material. .

The only way to avoid completely arbitrary definitions of properties is
to base their recognition on observations of the behavior of real materials.
The most fundamental concept to arise from such observations is that of
energy. The development of this concept took many centuries, and even-
tually led to one of the great generalizations of science: The law of conser-
vation of energy. All this is discussed in detail in other books, and will not
be further elaborated here. We merely list as postulates those principles
pertinent to this work:

(a) There exists a form of energy, known as internal energy, U, which
for homogeneous fluids existing as simple systems is a property of the material
and is a function of temperature, pressure, and composition.
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(b) The total energy of a system and its surroundings is conserved; energy
may be transferred from a system to its surroundings and vice versa, it may
be transformed from one form to another but the total quantity remains
constant.

The first of these postulates is requisite to the second, which through its
universal acceptance has come to be known as the first law of thermodynam-
ics. Its domain of validity has been circumscribed by the discovery of
nuclear reactions in which mass is converted into energy and vice versa.
Nevertheless, it remains a law valid for all other processes.

Heat is a word used to describe the process by which energy is transferred
(“flows”’) under the influence of a temperature difference between a system
and its surroundings. Since internal energy is the only form of energy of
which temperature is a manifestation, the notion of heat is inherently tied
to the concept of internal energy. However, a quantlty of heat, Q, represents
merely an amount of energy crossing the boundary of a system, and thus
cannot be a property of the system.

Work is a word used to describe the process by which energy is tfans-
ferred between a system and its surroundings as the result of the displace-
ment of an external force. A quantity of work, W, again represents an
amount of energy crossing the boundary of a system, and is not a property
of the system.

As applied to systems of constant mass (closed systems) for which the
only form of energy to experience change is its internal energy, the first
law takes the familiar form:

AU=0 - W.

The usual sign conventions with regard to Q and W have been adopted:
The numerical value of Q is taken as positive when heat is added to the
system, while the numerical value of i is taken as negative when work
is done on the system,

This equation cannot be regarded as giving an explicit definition of
internal energy. In fact, no such definition is known. However, the postu-
lated existence of internal energy as a property can be tested through the
use of this equation as applied to experiments with homogeneous fluids.

Consider, then, the performance of a series of experiments with a constant-
composition homogeneous fluid in a piston-and-cylinder assembly. Tem-
perature and pressure are taken as the independent variables of the system.
Changes are brought about in the system by alteration of its temperature
and pressure. This is accomplished by the addition or extraction of heat
and by displacement of the piston within the cylinder. In all experiments
the temperature and pressure are changed from T, and P, to T, and P,,
so that the properties of the system are altered by a constant amount. How-
ever, the path of the change, i.e., the relation between T and P during the
process, is varied arbitrarily from run to run.
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It is implicit in these discussions that there be a single value of P and a
single value of T for the entire system at each stage of every process. The
moment we write P and T for the system, we imply uniformity of tempera-
ture and pressure throughout the system. The only way we can ensure this
uniformity during the course of our experiments is to carry them out
slowly so as to avoid the generation of pressure waves in our fluids and
so as to allow*time for the thermal diffusivity of the system to smooth
out even minute temperature variations. A system within which there are no
non-uniformities which act as driving forces for change is said to be in a
state of internal equilibrium. Processes that proceed so that displacements
from internal equilibrium are always infinitesimal are said to be internally
reversible. To carry out such processes in practice, we find it necessary
also to keep the system very nearly in equilibrium with its surroundings.
Processes that proceed so that displacements from both external and inter-
nal equilibrium are infinitesimal are called completely reversible, or more
simply, reversible. The term arises from the fact that such processes can be
reversed by a differential change in external conditions.

The experiments we are discussing are therefore conducted essentially
reversibly. For each experiment we keep a careful account of the volume of
the system, ¥, of the amount of heat, Q,.,, added or extracted, and of the
work, W, done on or by the system up to each intermediate set of con-
ditions, T and P. We emphasize the restriction to processes that are rever-
sible by writing Q,., and W,,.

We then examine the data, trying various combinations of the measured
values and performing various numerical operations, to see what order,
if any, can be brought out of the apparently disconnected sets of numbers.

For a given amount of material of given composition changed along
various paths from a particular initial condition (7, P,) to a particular
final condition (T, P,), we would first note, as would be expected, that
AV =V, — V, is constant regardless of path. This serves to confirm our
earlier observation that the volume of a given amount of a homogeneous
fluid (or its specific or molal volume) is a function of temperature, pressure,
and composition.

Our next observation would probably be that for the same set of experi-
ments the difference Q,., — W,., is constant for the over-all change regard-
less of path. This result is expected provided our postulates regarding the
existence of internal energy as a property and the conservation of energy
are valid. This observation provides at least partial confirmation of these
postulates, for the difference, O,y — Wiy, is seen to be the measure of a
property change which has already been designated A U. The restriction
of reversibility here comes about from the nature of the experiments being
considered, and not as a consequence of any limitation imposed by the
basic postulates. The result obtained that A U = Q,., — W, is merely
a special case of the more general equation for closed systems,
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AU = Q — W, which applies for any two equilibrium states whether the
process connecting them is reversible or not.
A further examination of the experimental data is then made to deter-
mine whether the existence of any additional properties is indicated. Cer-
2

tainly none is obvious, but if we evaluate the integral fd Wiey/ P for each
1

run, we find it to be constant and equal to A V. Thus
A V f d Wrev .

This is actually a well-known equation, far more easily arrived at through
the definition of work. As a result of this definition it is immediately
deduced that for a reversible expansion or compression of a fluid

dw,., = PdV.
Hence
d V — d Wrev
P

or

2
dH/rcv
AV—[T.

The point here is that we could establish the existence of the property, V,
as a result of integrations of our experimental data as indicated. Once it
is shown that a single value of the integral results, regardless of the path,
for given initial and final states, it becomes clear that the integral is the
measure of a property change. In.this case we immediately recognize the
property as already known through much more direct observations.

A similar integral is f dQ.,/T. If we evaluate this integral for each run

of our set of expenments we again find a single value for all paths. Again
we have evidence of the existence of a property. However, in this instance
it is not recognized as being known. Nevertheless, once the existence of
a property is indicated, it is natural to give it a.symbol and a name. Thus

we write 2
dQl’EV
18 = f e,
1

where S is called the entropy.

This result leads to an additional basic postulate There exists a property
of materials called entropy, S, which for homogeneous fluids existing as
simple systems is a function of temperature, pressure, and composition.
The integral given for A4 S provides a means for the calculation of changes
in this property.
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Just as the equation 4 U = Q — W does not explicitly define the pro-
2
perty internal energy, so the equations 4V = f dW,./P and 4S5 =
2 1

= f d Q..,/T cannot be considered to give explicit definitions of volume and
1

entropy. But implicit in these three equations is the existence of three pro-
perties. This is obvious in the case of volume, for which an explicit defi-
nition in terms of directly measurable distances is known. With regard
to internal energy and entropy, the situation is quite different. Classical
thermodynamics furnishes no explicit definitions of these properties.
Further insight can be gained only through study of statistical mechanics
and molecular theory.

We have dealt so far with simple systems made up of a given amount of
a homogeneous fluid. The reason for this is that the state of such
systems is fixed by establishing the conditions of temperature, pressure,
and composition. For heterogeneous simple systems made up of several
phases, each in itself a simple system but existing in mutual equilibrium
with the others, the state of the system depends on its temperature and
pressure, on the composition of each of the phases, and on the relative
amounts of the phases. It is clear that the total property of such a system
is the sum of its parts. Thus one can ascribe a complete set of total pro-
perties to any equilibrium state of the system, and for a change in a closed
system between two equilibrium states a unique set of property changes must
result regardless of the path of the process connecting the two states.
Experiments carried out on such systems yield exactly the sdme results as
described for homogeneous fluids. It is simply more difficult to identify
unique states of the system. The point of this is to generalize the equations
presented for homogeneous fluids to apply to heterogeneous systems.

Thus for any closed system subject to the limitations already described,
we may write the fundamental equations:

AU=0—W

and as a special case,
AU = Orev — Wieey-

In differential form, this last equation is written:

dU =dQv — dW,.,. (1-1)
For reversible processes where the only force is that of fluid pressure
dw,, = PdV. (1-2)

For the calculation of entropy changes we have shown that

2
— d Qrev
As_f—T—.
1
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It follows immediately from this that

erev
ds = —==

or that
dQ,., = TdS. (1-3)

The methods of classical thermodynamics for the calculation of property
values are based ultimately on Egs. (1-1) through (1-3). This is not to
suggest that direct use is commonly made of these equations for this
purpose. Accurate measurements of heat and work effects in experiments
such as those described are in fact very difficult. The actual methods used
will be described in Chapter 3.

1.4. The First and Second Laws of Thermodynamics. The volume is
an important thermodynamic property because it is directly measurable
and can be used to provide experimental information about a system.
Internal energy and entropy, on the other hand, can be determined only
by indirect means. Nevertheless, these properties are essential to the science
of thermodynamics, for without recognition of their existence the two
great generalizations on which this science is based would be impossible.

The law of conservation of energy or the first law of thermodynamics
could not be formulated without a prior postulate affirming the existence
of internal energy as a property of materials. And internal energy is regarded
as a property precisely for the reason that it allows this generalization to
be made.

Once the existence of the entropy is postulated, it becomes necessary to
determing whether any broad generalization based on this property is
possible. ﬁ‘hus one calculates the entropy changes associated with various
processes ‘and examines the results to see whether some pattern emerges.
The particular processes considered are not important, for one finds in
every case that for reversible processes the fotal entropy change in system
and surroundings resulting from the process is zero and for irreversible
processes it is positive. Thus one is led to postulate that this is in general
true, and we have for our final postulate a statement that has come to be
known as the second law of thermodynamics: All processes proceed in
such a direction that the rozal entropy change caused by the process is posi-
tive; the limiting value of zero is approached for processes which approach
reversibility. Mathematically this is expressed as

A Slotal g O-

It is one of the major triumphs of nineteenth-century science to have
developed a principle, unsurpassed in conciseness of statement, that describes
at once the directions of all processes in this vastly complex world.

The basic postulates upon which we build the science of thermodynamics
are here recapitulated for convenience.

2 CTNES3



10 . "THERMODYNAMICS OF NON-ELECTROLYTE SOLUTIONS

1. The macroscopic properties of homogeneous fluids existing as simple
systems are functions of temperature, pressure and composition.
2. One such property is a form of energy known as internal energy.
3. Energy is conserved.
4. There exists a property called entropy. Changes in this property are
 calculable by the equation, d S = dQ.../T.
5. The total entropy change resulting from any real process is positive
and approaches zero as the process approaches reversibility.

These postulates form the foundation for the development of a vast
network of equations. All that is needed in addition is definition and deduc-
tion. The deductive process is purely mathematical. This deductive process
and the postulates upon which it is based are ultimately subject to two tests.
The network of equations which results must be internally consistent, and
the consequences predicted must be in reality observed without exception.
If these tests are met, then the system of logic employed and the postulates
upon which it was based must be considered valid. Such tests have been
applied for more than a century with complete success, so that now these
postulates are regarded as laws of nature. As with all such laws, the proof
of their validity lies in the absence of disproof, in the absence of contrary
experience.



CHAPTER 2

THERMODYNAMIC PROPERTIES
‘ OF FLUIDS

2.1. The Principal Thermodynamic Functions. It was shown in the
_ preceding chapter that for closed systems made up of phases which are
themselves simple systems the following equations apply for an infinitesimal
change of state of the system resulting from a reversible process in which
the only force is fluid pressure.

dU = erev -d Wre'n (1'1)

dW,, = PdV, | (1-2)

dQ,., = TdS. (1-3)
Hence, ,

dU =TdS — PdV. @-1)

This is the basic differential equation relating the three thermodynamic
properties considered so far. Since this equation relates properties only,
it is not.limited by the restrictions placed on the process considered in its
derivation. However, the restrictions placed on the nature of the system
still apply. Thus Eq. (2-1) is valid for all processes that result in a change
of a given mass of material from one equilibrium state to another. Change of
composition as a result of chemical reaction or mass transfer between
phases is by no means excluded, provided equilibrium with respect to these
processes is specified for the end states.

As’a matter of convenience we now define several additional thermo-
dynamic properties which are composites of the properties already dis-
cussed:

Enthalpy: H=U+ PV
Helmholtz Function: A =U-TS
Gibbs Function: G = H-TS.

For infinitesimal changes between equilibrium states of a given mass of
material, simple differentiation gives:

dH =dU + d(PV)
=dU - d(TS)
dG = dH — d(T S).

2% 11



