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Foreword

The 1981 international Computing Symposium is the sixth in a biennial series
organized by the European Chapters of the Association for Computing Machinery
(ACM). Although the theme chosen for the conference is SYSTEMS -
ARCHITECTURE, the programme reflects a wide range of topics and contributions
that are of current interest and concern to computing professionals. The primary
goal of the symposium is to report on the state of the art and to foster the
exchange of ideas among scientists, computer professionals, engineers and
managers on problems, new techniques and trends of SYSTEMS ARCHITECTURE.
At this conference topics under discussion will be the significant developments in
computing ranging from theoretical to very practical aspects.

The dlstmgunshed session chairmen, invitecl speakers and authors, 71 in total, are
well known in their specialist field and are of international repute. The 51 papers in
this book were selected from over 160 subinissions to give'a balanced and
authoritative view on the subject. The proceedings are divided into 13 sessions and
the second day of the conference has beer. extended to include a panél discussion
on “Formal Specification for Practical Use” and a specna!—mtefeat tutorial given by
Tom Gilb, “Design by Objectives”.

I. S. Torsun
Programme Committee Chairman
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MULTIPROCESSOR DESIGN AND MATHEMATICAL STRUCTURES

W. Forster
Faculty of Mathematical Studies, The University; Southampton, England

This paper first investigates abstract mathematical structures
and the possibility of parallel execution of operations. We
then discuss corresponding multiprocessor structures. As a
concrete example the numerical solution of nonlinear equations
will be considered. We utilize recently developed globally
convergent algorithms for the solution of systems of highly
nonlinear equations. Some aspects of these new algorithms in a
multiprocessor environment will be studied and possible future
improvements outlined. In the last section we examine the
possibility of off-the-shelf implementation of a dedicated
multiprocessor (a nonlinear equation solver) using available
VLSI components.

INTRODUCTION

The requirement to achieve faster throughput of data has led to the implementation
of a number of multiprocessors with various design philosophies [1]. One such
design, the CRAY-1, is very efficient in handling loops. Another design, the
Floating Point AP-120B, has as main feature the efficient execution of floating
point arithmetic. A third design, the ICL DAP, can efficiently handle elliptic
partial differential equations. Other designs, e.g. data driven multiprocessors
utilizing Petri-nets, are in the prototype stage EZ], [3]. The mathematical
features (e.g. floating point arithmetic, etc.) around which existing
multiprocessors have been designed are obviously important but seem to be a

rather arbitrary collection when compared to the.vast number of mathematical
structures which are amenable to parallel computation. None of the existing above
mentioned multiprocessors utilizes recently developed technology. The availability
of comparatively low priced microprocessors, support devices and memory

components allows the design of multiprocessors with a much larger number of
processing elements [4]. In this paper we will first investigate some mathematical
structures and the possibility of matching multiprocessor structures to these -
mathematical structures. We then outline briefly how these ideas can be used to
design a multiprocessor specifically dedicated to the solution of systems of
nonlinear equations. In the view of the author, the proposed multiprocessor
structure represents the fastest known noniinear equation solver.

MATHEMATICAL STRUCTURES AND MULTIPROCESSOR STRUCTURES

- Let us consider the algebraic structure of a group. Assuming the group operation
is addition, then from a mathematical point of view it is unimportant whether the
elements are real numbers, vectors, or matrices. In a computational setting this
independence on the elements is e.g. implemented in APL (In APL a single function
may be able to cope with a scalar, vector or matrix. Variable types do not have to
be specifically declared. They are inferred from their context). From a
mathematical point of view the nature of the elements (real numbers, vectors,



matrices) is unimportant, but for computational purposes the precise nature of the
operations to be performed requires detailed attention (e.g. memory requirements
have to be considered). In a multiprocessor environment a suitable compiler (in an
extended sense) could make the required number of processing elements (PE's)
available (e.g. one PE if we add real numbers, n PE's if we add vectors,

n? PE's if we add n x n matrices). _

At the next level of abstraction we consider e.g. groups and structure preserving
mappings between groups. At this level of abstraction we talk about categories
(e.g. the category of groups, the objects are groups and the mappings are group
homomorphisms). The next level of abstraction considers structure preserving
maps between categories, and we talk about functors. For literature see e.g. [51,
{6]. In a simplified form these concepts will be used later. ’

Let us consider an example of a category. We could e.g. have sets and continuous
functions defined on these sets, i.e. we map sets into sets by continuous functions.
This is an example of a category (objects: sets, mappings: continuous functions).
If we have a large number of PE's, then we can associate each PE with an element
from a set. Each PE can perform a given function evaluation. The -functfon
evaluations obtained by all PE's form another set, We have therefore succeeded to
represent the category “set" in some form as a multiprocessor structure. Of course
there are limitations. One has to keep in mind that mathematical structures may
have an infinite number of elements, computer structures are always finite in
some form. ’ ’

A suitable programming language for such a multiprocessor would not only allow to
define data types (e.g. sets), but would allow also the definition of operations
on these data types. One would then be able to execute user defined algebras on
such a machine. In PASCAL these ideas are partially realized, i1.e. PASCAL allows
the definition of data types (by using the TYPE declaration), but it does not
allow the definition of operators on these data types.

A NONLINEAR EQUATION SOLVER

In this section we will outline the design of a dedicated multiprocessor, a
nonlinear equation solver. The complexity necessary for general purpose
multiprocessor structures seems to make dedicated applications more likely (7].
The solution of systems of nonlinear equations on computers is one of the more -
complicated problems. Until recently no globally convergent algorithm was available.
In 1967 the first satisfactory algorithm for the solution of a system of nonlinear
equations in n unknowns was published [8]. Since then many modifications have
appeared. These algorithms use what is known as topological fixed point theorems.
For details the reader is referred to the literature [9].
In this section we will briefly outline how these algorithms can be matched to
suitable multiprocessor structures. The main criterion is speed (combined with low
cost), i.e. we consider a user who wants to find one or more than one solution of
a system of nonlinear equations for some kind of real time application (e.g. a
control problem, etc.) and the user wants to find these solutions as fast as
possible (using low cost microprocessor technology). The nonlinear equation solver
we describe will require the following time to solve a system of n nonlinear
equations:
(1) the time required for the evaluation of one value of the given nonlinear
function, .
(ii) plus another time interval dependend on the dimension n of the problem.
Applications in which systems of nonlinear equations with varying data are solved
at regular time intervals are already known. Low cost microprocessor technology
will make such computations available for a larger class of applications.

(a) A nonlinear equation solver for a one-dimensional problem

He explain the main idea on a one-dimensional example. We want to find a zero of a
nonlinear function defined e.g. on the interval 0 s x s 1 , i.e. we want to find



a value x' such that g(x') = 0 . We assume we have N+1 PE's, each with a

reasonably sized memory.

(i) We associate each PE with a point x in [0, 1], e.g. we subdivide [0, 1]
into N equal intervals.

(i1) We compute the function value g(xj) on the processing element PEj
associated with x'j .

(411) We compare the sign of the computed function value g(xj) in PEJ. with the
sign of the function value 9("j+1) computed in PEJ*-I (i.e. the adjacent
PE). 1f the sign of g(xj) is different from the sign of g(xj+1) » then we

have found a solution. ; N
(iv) The PE where an affirmative answer to the question of change of sign has been
" obtained activates a device (a bus, etc.) and sends the coordinate X3 to some
output device.
This very fast method can find a zero of a one-dimensional problem in approximately
the time it takes to compute one function value. If higher accuracy is required,
then the same method can be employed again. This time by subdividing the interval

between xj and xJ‘,,1 into N ‘parts and proceeding as before. In this manner,

by repeating the above described procedure, after a couple of repeated applications
a very high accuracy can be achieved. .

(b) A nonlinear equation solver for an n-dimensional problem

For an n-dimensional problem, i.e. n nonlinear equations in n unknowns, the problem
is a more complicated one. An introduction to these algorithms, called fixed point
algorithms or pivoting algorithms, can be found in [9]. For the most recent
literature see [10]. For a paper on array processors and fixed point algorithms

see [11]. Instead of finding a zero g(x) = 0 we solve the equivalent problem .

f(x) = x with f(x) = g(x) - x , i.e. we compute fixed points. We will give a
brief outline for two-dimensional problems. The features of two-dimensional problems
can easily be generalized to n-dimensional problems. In two dimensions we
triangulate e.g. a region called a simplex into smaller simplices {see Fig. 1). In
n dimensions we would subdivide an n-dimensional simplex into smaller
n-dimensional simplices. For the n-dimensional case we assume we have n+l PE's ,
each with memory, for each vertex of the triangulation. The nonlinear function is
assumed to be a continuous function

f: " s 5"

from the n-dimensional simplex to itself, At each grid point (vertex) we compute
the function value. This can be done concurrently. We attach an integer label i
according to

i =m1‘nj 4| f'j(x0 s Xp s eee s xn) < % > 0}
to each grid point (xO s Xy s ene s xn) .

For the one-dimensional problem we had the condition that thé sign of the function
values at two adjacent points has to be different. The analogous condition for the
n-dimensional problem is that the vertices of a simplex carry the labels
{0, 1, ... , n} . This can be checked in approximately 1ogz(n) steps.

If we want to obtain higher accuracy, we can apply a method similar to the one
mentioned for one-dimensional problems. Instead of integer labels we have to use
something called vector labels. The reason for this is the fact that for integer
labels the solution of the problem does not have to lie inside the simplex regarded
as approximate solution (for n > 1) , see e.g. [9]. For vector labels the solution
lies inside the simplex regarded as approximate solution. A vector label is a
vector :

"j = f'j(xo.. xl 2 ces p xn) - Xj
and we compute these vectors for each grid point.



If the zero vector is a convex combination of the vector labels attached to the
vertices of a simplex, then we have a solution, i.e. if

Oljlj = 0

A, = 1 and A, 20 ,

j J J

then a fixed point lies inside the simplex. In other words we have to solve a
system of linear equations for each simplex. The systems we have to solve are of
the form

where

fHe~13 p13
o

e .. . X 1
Y I U . = | . .
‘n .0

where 2(y") is the vector label of the m-th vertex ym of the simplex under . .
consideration. The algorithm is more complex, but we can achieve higher accuracy
by repeatedly applying the method to smaller and smaller solution simplices.

For a discussion of the solution of systems of linear equations on array
processors see e.g. [12].

{c) Multiprocessor structure associated with nonlinear equation solver

-

Part of a multiprocessor structure for the two-dimensional example mentioned above
is shown in Fig. 2. Each PE has its own arithmetic and 1ogic unit (ALU) plus
memory. If n is the dimension of the problem, then for each point of the
triangulation we have n + 1 (in our two-dimensional example n + 1 = 3) PE's .
These n + 1 PE's are interconnected by a bus and form a column of PE's .

Apart from this bus each PE in the column is connected to 2n + 2 (in our case 6)
other PE's in the manner shown in Fig. 2. For the computation of function values
the PE's in a column communicate with each other via a bus. .For the computation
of the labels the PE's in a column have to communicate with each other. For the
determination of a solution simplex all the columns of PE's associated with the
vertices of a simplex have to communicate with each other. Furthermore, all the
PE's have to be connected to a master PE via a system bus.

(d) Sophisticated features for multiple solutions

We consider a further sophistication of above method. In our problem we map e.g.
an n-dimensional simplex into itself. We have triangulated this simplex into
smaller simplices. One can associate a group with these simplices. The map

f: N s gl

from the n-dimensional simplex to itself induces a map f« . (group homomorphism)
from a group to itself. f, .is given by ’

fo(z) = deg f .z .
where z denotes an element of the group. deg f is a uniquely determined integer,
called the topological degree of f . In some sense this number counts the

simplices of s" which are mapped into one simplex of s" . The computations for
f and f, can be performed on two separate arrays of PE's. The actual
calculations of deg f (on the arrays of PE's reserved for f,) is best heing



handled by performing a certain count of oriented n-simplices (we form the
difference between certain positively oriented n-simplices and certain negatively
oriented n-simplices). The calculation of f, leads to an estimate on the
expected number of solutions (gives a minimum number). If deg f is e.g. k ,
then we can use k (or possibly more) PE arrays to obtain higher accuracy for
multiple solutions by refining the grid size of each of the k (or more) solution
simplices concurrently (as explained earlier). A suitable mechanism (e.g. compiler)
can prepare the PE arrays as soon as the topological degree is computed.

The realization of such a scheme can be ‘considered to be an implementation of some
of the abstract ideas discussed earlier in this paper. We have two categories. One
category has simplices as objects and piecewise linear maps as mappings. In this
category we compute our solution simplices. The second category has groups as
objects and group hemomorphisms as mappings. In this second category we compute the
topological degree, i.e. a lower estimate for the number of solutions. The
connection between these two categories is described by a functor. This
implementation by a multiprocessor can be considered to reflect in some sense the
abstract mathematical notions of category and functor.

{e) Using cubes instead of simplices

From the applications point of view the use of cubes instead of simplices seems to
be preferable. Especially when one subdivides a given n-dimensional region it
seems easier to have cubes and to subdivide these cubes. From an abstract point of
view the use of n-dimensional cubes instead of n-dimensional simplices does not
seem to involve too many difficulties. Unfortunately most of the theory developed
(homology and cohomology theory) uses simplices for detailed discussions and only
recently have some texts appeared using cubes instead of simplices. For
computational purposes a large number of details is required and at present there
is a gap between the abstract theory and the precise details required for
algorithmic purposes. I would like to mention that H.W. Kuhn in [13] was perhaps
the first one to point out the importance of cubes in a computational context.
(It is always possible to subdivide an n-dimensional cube into n! n-dimensional
simplices. In order to avoid dealing with a large number of simplices one would
prefer a theory based solely on n-dimensional cubes).

From an applications point of view, from a computational point of view and from the
designers point of view the use of cubes seems to be preferable to the use of
simplices. At present the necessary details required for computational purposes
are not available.

IMPLEMENTATION USING OFF-THE-SHELF PRODUCTS

In order to reduce development costs it is desirable to use readily available
components. At present there is only one microprocessor with multiprocessing
capabilities on the market, namely the Intel 8086. The Intel 8086 is a 16-bit CPU
with an instruction set which includes arithmetic instructions covering various
types of addition, subtraction, multiplication and division. The 8086 microprocessor
is supported by a number of support devices like the 8089 1/0 processor, the 8288
bus controller, the 8289 bus arbiter, the 8282 and 8283 latches, etc. These

support devices simplify the construction of multiprocessors considerably.
Furthermore, one would have to use the 8231 arithmetic processing unit for function
evaluations and the 8232 floating point processor for 32-bit and 64-bit precision
arithmetic. For a dedicated application the program can reside in ROM's. The
components required for one PE, including the bus interface, can be assembled on

a single board. Alternatively one could use readily availdble boards like the

iSBC 86/12A single board computer, the iSBC 310 high speed mathematics unit, the
iSBC 300 32K-byte RAM expansion module, the iSBC 340 16K-byte EPROM/ROM expansion
module, etc. The 8086 family is supported by a bus called multibus. The number of
PE's a multibus can support is 16. For our purposes this means that one can use
this multibus only for one-dimensional implementations. A reasonable



two-dimensional implementation already requires more than 16 PE's.
To sumarize off-the-shelf implementation of a nonlinear equation solver one can
say that suitable microprocessors plus support elements are already available,

CONCLUSION

In this paper we briefly discussed various mathematical structures and showed how
they can be matched to multiprocessor structures. An application in the form of

a dedicated multiprocessor, namely a nonlinear equation salver, was then outlined.
Matching a multiprocessor structure to mathematical structures leads in this
example to a fast nonlinear equation solver for systems of n equations in

n unknowns (with possible multiple solutions). Investigations into off-the-shelf
implementation of such a design conclude the paper.
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