SYSTEMS
ARCHITECTURE

Procecdings of the Sixth

ACM European Hewional Conference




2/403

\ THE INTERNATIONAL
} COMPUTING SYMPOSIUM

 SYSTEMS
 ARCHTECTURE

Proceedings of the sixth
ACM E{uropean regional conference

/

g




a3
‘-
PG

Published by Westbury House, the books division of IPC Science and Technology
Press Limited, PO Box 63, Bury Street, Guildford, Surrey GU2 §BH, England

© IPC Business Press Limited 1981

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, wnthout the prior permission of
IPC Science and Technology Press Limited.

ISBN 0 86103 050 8

Printed in Great Britain



Foreword

The 1981 international Computing Symposium is the sixth in a biennial series
organized by the European Chapters of the Association for Computing Machinery
(ACM). Although the theme chosen for the conference is SYSTEMS -
ARCHITECTURE, the programme reflects a wide range of topics and contributions
that are of current interest and concern to computing professionals. The primary
goal of the symposium is to report on the state of the art and to foster the
exchange of ideas among scientists, computer professionals, engineers and
managers on problems, new techniques and trends of SYSTEMS ARCHITECTURE.
At this conference topics under discussion will be the significant developments in
computing ranging from theoretical to very practical aspects.

The dlstmgunshed session chairmen, invitecl speakers and authors, 71 in total, are
well known in their specialist field and are of international repute. The 51 papers in
this book were selected from over 160 subinissions to give'a balanced and
authoritative view on the subject. The proceedings are divided into 13 sessions and
the second day of the conference has beer. extended to include a panél discussion
on “Formal Specification for Practical Use” and a specna!—mtefeat tutorial given by
Tom Gilb, “Design by Objectives”.

I. S. Torsun
Programme Committee Chairman



Programme Committee

I.S. Torsun

Brunel University, UK (Chairman)
H. Savary

IRIA, France

M. F. Nicolet

Phillips AG, Switzerland

C. Jenny

IBM, Zurich, Switzerland

P. Schnupp

InterFace, Munich, Germany
T. Harder

Universitat Kaiserslautern, Germany
J. Kent '
Tandberg Data, Oslo, Norway
H. Hinke

GMD, Germany

M. Jackson

iITT, UK

G. Valle

Universita di Bologna, ltaly
B. Parsiow '
Brunel University, UK

Conference held in cooperation with
Computer Communications and
Microprocessors and Microsystems



Contents

Foreword
A Distributed and open architecture

Multiprocessor design and mathematical structures
W. Forster
ENCHERE: a distributed auction bidding system. Externai
characteristics and general design considerations
Michel Banatre :
Network data management for heterogeneous computer networks
the virtual file concept
R. Popescu-Zeletin, L. Henckel, W. Heinze, K. Jacobsen and G. Maisa

B8 Microprocessors and microprogremming

A dynamically microprogrammable machine as a variable function
resource in a local area network
R. P. Bird .

A distributed system for educatlonal use
Jean M. Bacon and Adrian V. Stokes

A strategy, method and set of tools for a user, dynamic
microprogramming environment
P. F. Wilk and G. M. Bull

C Communication

Teletex with encryption and signature faciimes* :
D. W. Davies A
Connecting a computer to a packet switched network by means of a
finite state automaton
P. W. Garratt
Internetworking analysis
A. Faro and G. Messina

Concept of a communication mechanism with respect toa distributed '

multi-microcomputer system f o
F. Eser Lt

oy

D. System specification and requirements

Software stabitity* e o o
Wiadysfaw M. Turski .

An activation model for information system speciflcation
R. E. Cooley

Bases for the specification of commumcatmg processes.
Ph. Jorrand

Interactive software development by stepwise tormahsation
B. Kramer and H. W. Schmidt ™

* Invited paper

NERM

10
21
35
37
46
54
63
65

75
85

95
105

107

117

124
134



E Tools and management

Architecture of software systems in the context of software
engineering environments
Hans-Ludwig Hausen and Monika MDIIorburg

A specification language for interactive data base updating ‘

T. A. Matzner and G. R. Kofer
Towards a secure programmation of task synchronization
R. Valette, J. Golinski and M. Courvoisier :
A method for interactive conceptual database design
Holger Gunther, Rudolf Krieger and Georg Lausen

F Data base architecture

A multi-path methodology for developing database appllcation systems‘

H. H. Wedekind
Distributed architecture and decentralized controt for a lodai
network database system

Nguyen Gia Toan and Guy Sergeant o)
The architecture of VIDEBAS, a relational database 3

management system
H. M. Blanken

Monitoring CODASYL database management systems
Colin I. Johnston and Aileen S. Stone

ASDAS — a simple database management system- °
R. A. Frost

G Fault-tolerant systems

Recovery architecture for database systems )
A. Reuter e
Design and implementation of a fault-tolerant
multimicrocomputer system
D. Bernhardt and E. Schmitter

H Analysis and construction of large systems

An empirical approach to program analysus and construction"

Peter Naur

The environment of program development and maintenance — .

programs, programming and programming support*
) M. M. Lehman
A proget,s__s-t;gented approach to sofftware devdopment
lo

*Invited paper

vi

147 .

158
167
177

189

191

203

. 213

224
234

241

243
256

263

T

273

285

e — "



J Man-machine interface

. New technology and its influence on the user' )
William Newman o
Some experience in text processmg in the Chmgse languaoe
Brian R. Gaines
A progess-oriented concept for the desngn Qf mtergqtlve systgmg g
Providing the user with a tailor-made interface,
. Sommerville
A man-machine communication oriented graphical system
.C. Chicoix, J. Dewitte and M. Ollivier

Ly

K Software and systems architecture

Vector processing*
R. N. ibbett : P
The dynamic macro pipeline Y
D. J. Howarth and A. A. R. Nazif _ S e N
Multicomputer system for industrial process control :
(abstract only)
J. P. Elloy, Cl. Munck and J. Ph. Stefanini
A computer based method for evaiuating the performances
of a system
M. Gourgand, M. Schneider and A. Tanguy

L Language design .

Software construction with the ADA programming language*
Valerie A. Downes

A CHILL based distributed architecture
R. De Nicola, R. Martucci and P. Roberti

The KIWINET/NICOLA approach: matching OS responses to users
K. Efe and K. Hopper

MARTLET: a programming language for a distributed multiple
microprocessor system
R. L. Grimsdale, F. Halsali, F. Martin-Polo and G. C. Shoja

Building a uniform programming environment based on data
abstraction
R. T. Bouts

Evaluation of an electronic mail language
D. L Scapin

*invited paper

vii

295

297

301

1L
321

330

335
337
348

360

361

373

375
383
393

403

415
425



M Data flow architecture

Nondeterministic dataflow programming
A. J. Catto, J. R. Gurd and C. C. Kirkham
Hierarchical language derived data flow archltectutes

P. E. Osmon

On using data flow in a system of multiple siRgle board computers

J. Aspelund

Communication in a distributed implementétfon of an ’

applicative language

F. Warren Burton and M. Ronan Sleep

VME/B Resource Management Environment (RME) —
an integrated approach to packaging systems software

D. G. U. Primrose

"~ Some concepts for an information system architecture

C. Rolland

A basic structure for Data Dictionary systems

F. S. Zahran

oy

N Information and system management

How to structure unstructured languages

Rita Nagel

Authof index

viii

433
-.'15 )

. A35.
K ) ‘1445 ‘
" as4

Llae2

469

471

- 482

483

504

515



A Distributed and open architecture

Session Chairman: Dr F. K. Hanna
Electronics Laboratories, University of Kent, Canterbury, UK

/






MULTIPROCESSOR DESIGN AND MATHEMATICAL STRUCTURES

W. Forster
Faculty of Mathematical Studies, The University; Southampton, England

This paper first investigates abstract mathematical structures
and the possibility of parallel execution of operations. We
then discuss corresponding multiprocessor structures. As a
concrete example the numerical solution of nonlinear equations
will be considered. We utilize recently developed globally
convergent algorithms for the solution of systems of highly
nonlinear equations. Some aspects of these new algorithms in a
multiprocessor environment will be studied and possible future
improvements outlined. In the last section we examine the
possibility of off-the-shelf implementation of a dedicated
multiprocessor (a nonlinear equation solver) using available
VLSI components.

INTRODUCTION

The requirement to achieve faster throughput of data has led to the implementation
of a number of multiprocessors with various design philosophies [1]. One such
design, the CRAY-1, is very efficient in handling loops. Another design, the
Floating Point AP-120B, has as main feature the efficient execution of floating
point arithmetic. A third design, the ICL DAP, can efficiently handle elliptic
partial differential equations. Other designs, e.g. data driven multiprocessors
utilizing Petri-nets, are in the prototype stage EZ], [3]. The mathematical
features (e.g. floating point arithmetic, etc.) around which existing
multiprocessors have been designed are obviously important but seem to be a

rather arbitrary collection when compared to the.vast number of mathematical
structures which are amenable to parallel computation. None of the existing above
mentioned multiprocessors utilizes recently developed technology. The availability
of comparatively low priced microprocessors, support devices and memory

components allows the design of multiprocessors with a much larger number of
processing elements [4]. In this paper we will first investigate some mathematical
structures and the possibility of matching multiprocessor structures to these -
mathematical structures. We then outline briefly how these ideas can be used to
design a multiprocessor specifically dedicated to the solution of systems of
nonlinear equations. In the view of the author, the proposed multiprocessor
structure represents the fastest known noniinear equation solver.

MATHEMATICAL STRUCTURES AND MULTIPROCESSOR STRUCTURES

- Let us consider the algebraic structure of a group. Assuming the group operation
is addition, then from a mathematical point of view it is unimportant whether the
elements are real numbers, vectors, or matrices. In a computational setting this
independence on the elements is e.g. implemented in APL (In APL a single function
may be able to cope with a scalar, vector or matrix. Variable types do not have to
be specifically declared. They are inferred from their context). From a
mathematical point of view the nature of the elements (real numbers, vectors,



matrices) is unimportant, but for computational purposes the precise nature of the
operations to be performed requires detailed attention (e.g. memory requirements
have to be considered). In a multiprocessor environment a suitable compiler (in an
extended sense) could make the required number of processing elements (PE's)
available (e.g. one PE if we add real numbers, n PE's if we add vectors,

n? PE's if we add n x n matrices). _

At the next level of abstraction we consider e.g. groups and structure preserving
mappings between groups. At this level of abstraction we talk about categories
(e.g. the category of groups, the objects are groups and the mappings are group
homomorphisms). The next level of abstraction considers structure preserving
maps between categories, and we talk about functors. For literature see e.g. [51,
{6]. In a simplified form these concepts will be used later. ’

Let us consider an example of a category. We could e.g. have sets and continuous
functions defined on these sets, i.e. we map sets into sets by continuous functions.
This is an example of a category (objects: sets, mappings: continuous functions).
If we have a large number of PE's, then we can associate each PE with an element
from a set. Each PE can perform a given function evaluation. The -functfon
evaluations obtained by all PE's form another set, We have therefore succeeded to
represent the category “set" in some form as a multiprocessor structure. Of course
there are limitations. One has to keep in mind that mathematical structures may
have an infinite number of elements, computer structures are always finite in
some form. ’ ’

A suitable programming language for such a multiprocessor would not only allow to
define data types (e.g. sets), but would allow also the definition of operations
on these data types. One would then be able to execute user defined algebras on
such a machine. In PASCAL these ideas are partially realized, i1.e. PASCAL allows
the definition of data types (by using the TYPE declaration), but it does not
allow the definition of operators on these data types.

A NONLINEAR EQUATION SOLVER

In this section we will outline the design of a dedicated multiprocessor, a
nonlinear equation solver. The complexity necessary for general purpose
multiprocessor structures seems to make dedicated applications more likely (7].
The solution of systems of nonlinear equations on computers is one of the more -
complicated problems. Until recently no globally convergent algorithm was available.
In 1967 the first satisfactory algorithm for the solution of a system of nonlinear
equations in n unknowns was published [8]. Since then many modifications have
appeared. These algorithms use what is known as topological fixed point theorems.
For details the reader is referred to the literature [9].
In this section we will briefly outline how these algorithms can be matched to
suitable multiprocessor structures. The main criterion is speed (combined with low
cost), i.e. we consider a user who wants to find one or more than one solution of
a system of nonlinear equations for some kind of real time application (e.g. a
control problem, etc.) and the user wants to find these solutions as fast as
possible (using low cost microprocessor technology). The nonlinear equation solver
we describe will require the following time to solve a system of n nonlinear
equations:
(1) the time required for the evaluation of one value of the given nonlinear
function, .
(ii) plus another time interval dependend on the dimension n of the problem.
Applications in which systems of nonlinear equations with varying data are solved
at regular time intervals are already known. Low cost microprocessor technology
will make such computations available for a larger class of applications.

(a) A nonlinear equation solver for a one-dimensional problem

He explain the main idea on a one-dimensional example. We want to find a zero of a
nonlinear function defined e.g. on the interval 0 s x s 1 , i.e. we want to find



a value x' such that g(x') = 0 . We assume we have N+1 PE's, each with a

reasonably sized memory.

(i) We associate each PE with a point x in [0, 1], e.g. we subdivide [0, 1]
into N equal intervals.

(i1) We compute the function value g(xj) on the processing element PEj
associated with x'j .

(411) We compare the sign of the computed function value g(xj) in PEJ. with the
sign of the function value 9("j+1) computed in PEJ*-I (i.e. the adjacent
PE). 1f the sign of g(xj) is different from the sign of g(xj+1) » then we

have found a solution. ; N
(iv) The PE where an affirmative answer to the question of change of sign has been
" obtained activates a device (a bus, etc.) and sends the coordinate X3 to some
output device.
This very fast method can find a zero of a one-dimensional problem in approximately
the time it takes to compute one function value. If higher accuracy is required,
then the same method can be employed again. This time by subdividing the interval

between xj and xJ‘,,1 into N ‘parts and proceeding as before. In this manner,

by repeating the above described procedure, after a couple of repeated applications
a very high accuracy can be achieved. .

(b) A nonlinear equation solver for an n-dimensional problem

For an n-dimensional problem, i.e. n nonlinear equations in n unknowns, the problem
is a more complicated one. An introduction to these algorithms, called fixed point
algorithms or pivoting algorithms, can be found in [9]. For the most recent
literature see [10]. For a paper on array processors and fixed point algorithms

see [11]. Instead of finding a zero g(x) = 0 we solve the equivalent problem .

f(x) = x with f(x) = g(x) - x , i.e. we compute fixed points. We will give a
brief outline for two-dimensional problems. The features of two-dimensional problems
can easily be generalized to n-dimensional problems. In two dimensions we
triangulate e.g. a region called a simplex into smaller simplices {see Fig. 1). In
n dimensions we would subdivide an n-dimensional simplex into smaller
n-dimensional simplices. For the n-dimensional case we assume we have n+l PE's ,
each with memory, for each vertex of the triangulation. The nonlinear function is
assumed to be a continuous function

f: " s 5"

from the n-dimensional simplex to itself, At each grid point (vertex) we compute
the function value. This can be done concurrently. We attach an integer label i
according to

i =m1‘nj 4| f'j(x0 s Xp s eee s xn) < % > 0}
to each grid point (xO s Xy s ene s xn) .

For the one-dimensional problem we had the condition that thé sign of the function
values at two adjacent points has to be different. The analogous condition for the
n-dimensional problem is that the vertices of a simplex carry the labels
{0, 1, ... , n} . This can be checked in approximately 1ogz(n) steps.

If we want to obtain higher accuracy, we can apply a method similar to the one
mentioned for one-dimensional problems. Instead of integer labels we have to use
something called vector labels. The reason for this is the fact that for integer
labels the solution of the problem does not have to lie inside the simplex regarded
as approximate solution (for n > 1) , see e.g. [9]. For vector labels the solution
lies inside the simplex regarded as approximate solution. A vector label is a
vector :

"j = f'j(xo.. xl 2 ces p xn) - Xj
and we compute these vectors for each grid point.



If the zero vector is a convex combination of the vector labels attached to the
vertices of a simplex, then we have a solution, i.e. if

Oljlj = 0

A, = 1 and A, 20 ,

j J J

then a fixed point lies inside the simplex. In other words we have to solve a
system of linear equations for each simplex. The systems we have to solve are of
the form

where

fHe~13 p13
o

e .. . X 1
Y I U . = | . .
‘n .0

where 2(y") is the vector label of the m-th vertex ym of the simplex under . .
consideration. The algorithm is more complex, but we can achieve higher accuracy
by repeatedly applying the method to smaller and smaller solution simplices.

For a discussion of the solution of systems of linear equations on array
processors see e.g. [12].

{c) Multiprocessor structure associated with nonlinear equation solver

-

Part of a multiprocessor structure for the two-dimensional example mentioned above
is shown in Fig. 2. Each PE has its own arithmetic and 1ogic unit (ALU) plus
memory. If n is the dimension of the problem, then for each point of the
triangulation we have n + 1 (in our two-dimensional example n + 1 = 3) PE's .
These n + 1 PE's are interconnected by a bus and form a column of PE's .

Apart from this bus each PE in the column is connected to 2n + 2 (in our case 6)
other PE's in the manner shown in Fig. 2. For the computation of function values
the PE's in a column communicate with each other via a bus. .For the computation
of the labels the PE's in a column have to communicate with each other. For the
determination of a solution simplex all the columns of PE's associated with the
vertices of a simplex have to communicate with each other. Furthermore, all the
PE's have to be connected to a master PE via a system bus.

(d) Sophisticated features for multiple solutions

We consider a further sophistication of above method. In our problem we map e.g.
an n-dimensional simplex into itself. We have triangulated this simplex into
smaller simplices. One can associate a group with these simplices. The map

f: N s gl

from the n-dimensional simplex to itself induces a map f« . (group homomorphism)
from a group to itself. f, .is given by ’

fo(z) = deg f .z .
where z denotes an element of the group. deg f is a uniquely determined integer,
called the topological degree of f . In some sense this number counts the

simplices of s" which are mapped into one simplex of s" . The computations for
f and f, can be performed on two separate arrays of PE's. The actual
calculations of deg f (on the arrays of PE's reserved for f,) is best heing



handled by performing a certain count of oriented n-simplices (we form the
difference between certain positively oriented n-simplices and certain negatively
oriented n-simplices). The calculation of f, leads to an estimate on the
expected number of solutions (gives a minimum number). If deg f is e.g. k ,
then we can use k (or possibly more) PE arrays to obtain higher accuracy for
multiple solutions by refining the grid size of each of the k (or more) solution
simplices concurrently (as explained earlier). A suitable mechanism (e.g. compiler)
can prepare the PE arrays as soon as the topological degree is computed.

The realization of such a scheme can be ‘considered to be an implementation of some
of the abstract ideas discussed earlier in this paper. We have two categories. One
category has simplices as objects and piecewise linear maps as mappings. In this
category we compute our solution simplices. The second category has groups as
objects and group hemomorphisms as mappings. In this second category we compute the
topological degree, i.e. a lower estimate for the number of solutions. The
connection between these two categories is described by a functor. This
implementation by a multiprocessor can be considered to reflect in some sense the
abstract mathematical notions of category and functor.

{e) Using cubes instead of simplices

From the applications point of view the use of cubes instead of simplices seems to
be preferable. Especially when one subdivides a given n-dimensional region it
seems easier to have cubes and to subdivide these cubes. From an abstract point of
view the use of n-dimensional cubes instead of n-dimensional simplices does not
seem to involve too many difficulties. Unfortunately most of the theory developed
(homology and cohomology theory) uses simplices for detailed discussions and only
recently have some texts appeared using cubes instead of simplices. For
computational purposes a large number of details is required and at present there
is a gap between the abstract theory and the precise details required for
algorithmic purposes. I would like to mention that H.W. Kuhn in [13] was perhaps
the first one to point out the importance of cubes in a computational context.
(It is always possible to subdivide an n-dimensional cube into n! n-dimensional
simplices. In order to avoid dealing with a large number of simplices one would
prefer a theory based solely on n-dimensional cubes).

From an applications point of view, from a computational point of view and from the
designers point of view the use of cubes seems to be preferable to the use of
simplices. At present the necessary details required for computational purposes
are not available.

IMPLEMENTATION USING OFF-THE-SHELF PRODUCTS

In order to reduce development costs it is desirable to use readily available
components. At present there is only one microprocessor with multiprocessing
capabilities on the market, namely the Intel 8086. The Intel 8086 is a 16-bit CPU
with an instruction set which includes arithmetic instructions covering various
types of addition, subtraction, multiplication and division. The 8086 microprocessor
is supported by a number of support devices like the 8089 1/0 processor, the 8288
bus controller, the 8289 bus arbiter, the 8282 and 8283 latches, etc. These

support devices simplify the construction of multiprocessors considerably.
Furthermore, one would have to use the 8231 arithmetic processing unit for function
evaluations and the 8232 floating point processor for 32-bit and 64-bit precision
arithmetic. For a dedicated application the program can reside in ROM's. The
components required for one PE, including the bus interface, can be assembled on

a single board. Alternatively one could use readily availdble boards like the

iSBC 86/12A single board computer, the iSBC 310 high speed mathematics unit, the
iSBC 300 32K-byte RAM expansion module, the iSBC 340 16K-byte EPROM/ROM expansion
module, etc. The 8086 family is supported by a bus called multibus. The number of
PE's a multibus can support is 16. For our purposes this means that one can use
this multibus only for one-dimensional implementations. A reasonable



two-dimensional implementation already requires more than 16 PE's.
To sumarize off-the-shelf implementation of a nonlinear equation solver one can
say that suitable microprocessors plus support elements are already available,

CONCLUSION

In this paper we briefly discussed various mathematical structures and showed how
they can be matched to multiprocessor structures. An application in the form of

a dedicated multiprocessor, namely a nonlinear equation salver, was then outlined.
Matching a multiprocessor structure to mathematical structures leads in this
example to a fast nonlinear equation solver for systems of n equations in

n unknowns (with possible multiple solutions). Investigations into off-the-shelf
implementation of such a design conclude the paper.

REFERENCES
1 ACM Computing Surveys, vol. 9 (1977) (whole issue).

2 Gurd, J., Watson, I. 'Data driven system for high speed parallel computing;
Part I: Structur'ing software for parallel execution'. Computer Design
(June 1980), pp. 91-100.

3 Gurd, J., Watson, I. 'Data driven system for high speed parallel computing;
Part 11: Hardware design'. Computer Design (July 1980), pp. 97-106.

4 Mead, C., Conway, L. Introduction to VLSI systems, (chapter 8). Addison-Wesley,
Read'mg, Mass., 1980.

5 Arbib, M.A., Manes, E.G. Arrows, structures, and functors. Academic Press,
New York. 1975 ,

6 MacLane, S. Categories for the working mathematician. Springer, New York, 1971.

7 Enslow, P.H. (Ed.) Multiprocessors and pa’rane] processing. Wiley, New York,
1974.

8 Scarf, H., Hansen, T. The computation of economic equilibria. Yale University
Press, New Haven and London, 1973.

9 :Irogd M.J. The computation of fixed points and applications. Springer, New York,
976

10 Forster, W. (Ed.) Numerical solytion of highly nonlinear problems
North-Holland, Amsterdam, 1980

n Forster, W. 'Fixed point algorithms and array processors . pp. 169-179
in reference [10],

12 Sameh, A.H., Kuck, D.J. ‘On stable parallel linear systems solvers'.
J.ACM, vol. 25 (1978), pp. &1-91, . .

13 Kuhn, H.W. 'Some combinatorial lemmas in topology'. IBM ,Jdumﬂ of Research ah&
Development, vol. 4 (1960), pp. 518-524,




