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Preface to the Secdnd Edition

The present edition differs from the first in several places. In particular
our treatment of polycyclic and locally polycyclic groups—the most natural
generalizations of the classical concept of a finite soluble group—has been
expanded.

We thank Ju. M. Gorgakov, V. A. Curkin and V. P. Sunkov for many
useful remarks.

The Authors
Novosibirsk,
Akademgorodok,
January 14, 1976.



Preface to the First Edition

This book consists of notes from lectures given by the authors at Novosi-
birsk University from 1968 to 1970. Our intention was to set forth just the
fundamentals of group theory, avoiding excessive detail and skirting the
quagmire of generalizations (however a few generalizations are nonetheless
considered—see the last sections of Chapters 6 and 7). We hope that the
student desiring to work in the theory of groups, having become acquainted
with its fundamentals from these notes, will quickly be able to proceed to the
specialist literature on his chosen topic.

We have striven not to cross the bouridary between abstract and scholastic
group theory, elucidating difficult concepts by means of simple examples
wherever possible. Four types of éxamples accompany the theory numbers
under addition, numbers under multiplication, permutations, and matrices.
For understanding the basic text, knowledge gained from a general course in
algebra will suffice; more special facts are used at times in the examples. The
examples and exercises are in part used in the basic text, so that a reading of
their statements should not be omitted, nor their solution postponed for too
long. Solutions are included with some of these exercises. We were guided in
our nomenclature by the principle of a reasonable minimum of basic terms,
which required small departures from the prevailing terminology—these are
noted at the appropriate places in the text.

The bibliography contains mostly group-theoretical surveys and mono-
graphs. A few references to journal articles are given immediately in the text
and in general are rather random (a complete bibliography of group theory
would have several thousand entries).

In a few places unsolved problems are mentioned. A rather complete
collection of such problems, reflecting the interests of a wide circle of
specialists in group theory, can be found in the latest edition of the
“Kourovka Notebook™.

vii



viii Preface to the First Edition

The first version of. this book was published in Issues 3 and 4 of the
duplicated series “‘Library of the Department of Algebra and Mathematical
Logic of NGU”. We offer heartfelt thanks to all who communicated their
observations to us, in particular to Ju. E. Vapne, V. D. Marzurov, V. N.
Remeslennikov, N. S. Romanovskii, A. L. Starostin, S. N. Cernikov, and V.
A. Curkin.

The Authors
Novosibirsk,

. Akademgorodok,
February 3, 1971

Translator’s Remarks

1. In his paper [Infinite groups with cyclic suBgroups Doklady Akad.
Nauk SSSR 245, No. 4 (1979)] A. Ju. Ol'sanskii has announced a con-
struction of an infinite 2-generator group all of whose proper subgroups are
cyclic of prime order (where the set of primes occurring as orders is infinite).
This solves at one blow Smidt’s problem (p. 14), the maximal problem
(p. 137), and the minimal problem (p. 139). (OI'Sanskii has also constructed
1 nonabelian 2-generator group, all of whose proper subgroups are infinite
cyclic.) The details will appear soon in Izestija Akad. Nauk SSSR.

2. Itmay be useful to explain the various notations for functions (or maps) .
used in the text. Let S denote a set, s an element of it, and ¢ a map with
démain S. The “exponential” notation S?, s® for the images of S; s, is used
only when § is being considered as a multiplicatively written group, and ¢ is
a homomorphism. If S is an additive group, the notation S¢, s¢ is used
instead. If ¢ is not primarily a group homomorphism, then the notations S¢,
sd: ¢(8S), ¢(s), are used variously.

In the Russian editions the authors had introduced improvements to the
conventional terminology. Unfortunately, this went almost unnoticed by the
translator, so that the English terminology used is more standard. There may
however be some point in mentioning a few of the authors* original terms:
thus, for example, they used “period” for “exponent”’, “automorphically
invariant” for “characteristic”’, and a single word (meaning “step”) for

*“‘class” (of nilpotency) and “length” (of solubility).
3. Ttake the opportunity of thanking Janis Leach for her excellent typing,
and Maxine Burns and Abe Shenitzer for their kind advice and encourage-
ment. Support from the National Research Council of Canada is also
gratefully acknowledged.

R. G. Burns,
York University,
Toronto,

August 10, 1979



Introduction

Why does a square seem to us a symmetrical figure, a circle even more
symmetrical, but the numeral “*4" completely asymmetrical? To answer this
question, let us consider the motions leaving each of these figuresin the same
place as before. It is easy to see that for the square there are eight such
motions, for the circle infinitely many, but for the numeral “4” only one, the
identity, which leaves each point of the numeral fixed. The set G of different
motions leaving a given figure occupying the same space as before serves asa
measure of its degree of symmetry: the more numerous the elements of G,
i.e. the motions, the more symmetrical the figure. We defineontheset G a
rule of composition of its elements (or “‘operation”) as follows: if x, y are two
motions from G, then the result of composing them (called their “product”
and written xy) is defined to be the motion equivalent to the successive
application first of the motion x and then of the motion y. For example if x, y
are the reflections of a square in its diagonals, then xy is the rotation about its
centre through 180°. This composition of the elements of G clearly has the
following properties: (1) (xy)z = x(yz) for all elements x, y, z from G; (2)
there exists in G an element e such that xe = ex = x for all x from G; (3) for
each x from G there exists an element x " in Gsuchthat xx ' =x"'x =¢e.In
fact it is obvious that for ¢ we may take the identical (or “trivial’’) motion,
and for x~* the motion opposite to x, i.e. returning each point of the figure
from its new position to its old one.

Let us now leave aside our examples and consider an arbitrary set G on
which an operation is given; i.e. for each two elements x, y in G there is
defined an element xy again in G. If this operation satisfies conditions (1),
(2), (3), then the set G with the given operation is called a group. Groups are
basic among algebraic systems, and the theory of groups is basic among the
various subdisciplines of modern algebra. :

Xiii



xiv Introduction

It required the work of several generations of mathematicians, ;.- aning
in all about a hundred years, before the concept of a group had crystallized
out with iis present clarity. In the context of the theory of algebraic
equations the course of development of the group concept can be traced
from Lagrange, who, in essence, applied groups of permutations to the
solution of algebraic equations by radicals (1771), through the work of
Ruffini (1799) and Abe! (1824), to Evariste Galois, in whose work (1830)
the group concept is used quite explicitly (1t was he who first used the name).
Independently, and for other reasons, the group concept made its
appearance in geometry when in the mid-19th century the single geometry
of antiquity gave way to a multitude of geometries, and the gquestion arose of
establishing the relationships between these new geometries and of classify-
g them. The answer was provided by the Erlanger Programm of Klein
(1872), which proposed the idea of a group of transformations as the basis
for a classification of geometries. A third source of the group concept was
number theory; here among the instigators we mention only Euler, with his
remainders (or “‘residues”) after division of powers (1761), and Gauss with
his composition of binary quadratic forms (1801).

The realization at the end of the 19th century that the group-theoretical
ideas existing up till then independently in various areas of mathematics
were essentially the same, led to the formation of the modern abstract
concept of a group (by Lie, von Dyck, and others), and so to one of the
earliest instances of an abstract algebraic system. This abstract group
concept served in many ways as a model for the reworking; at the turn of the
century, of other areas of algebra, and of mathematics generally: for these
areas the process was then not so tortuous or difficult. The study of groups
without the assumption of finiteness, and entirely without assumptions as to
the nature of their elements, was formally inaugurated as an independent
branch of mathematics with the appearance in 1916 of O. Ju. Smidt’s book
“The Abstract Theory of Groups".

At the present time, group theory is one of the most highly developed
branches of algebra, with numerous applications both within mathematics
and beyond its boundaries: for instance to topology, function theory,
crystallography, quantum mechanics, among other areas of mathematics
and the natural sciences. In addition the theory has an independent life of its
own, whose ultimate goal is the description of all possible group operations.

We shall now give some examples of apphcatlons of groups m a]gcbra in
mathematics generally and in the natural sciences.

1. Galois groups. Classical Galois theory consxsts in the applxcatlon of
group theory to the study of fields in the following way. Tet K be a finite,
separable and normal extension of a field k. The automorpmsms of the field
K leaving fixed the elements of the subfield k, form a group under composi-
tion of functions. This group is called the Galois group 1(¢; say) of the
extension K/ k. The fundamental theorem of Galois theory asserts that if we
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associate with each subgroup H <= G its fixed subfield
K" ={x|xeK,xh=x forail he H},

we obtain an anti-isomorphism of the lattice of subgroups of G onto the
lattice of subfields intermediate between k and K. The field extension K 7/
will be normal if and only if the subgroup H is normal in G, and then the
restriction to K of the automorphisms in G will yield a homomorphism,
with kernel H, of the group G onto the Galois group of the extension K*/k.
The application to the question of the solubility of equations by radicals
can then be described as follows. Let f be a polynomial in x over the field k,
. and X the splitting field of f. Let G be the Galois group of the exterision K/k.
This group is also called the Galois group of the polynomial f over the field k.
(Its elements are represented in the natural way as permutations of the roots
of the equation f(x) = 0.) It turns out that the equation f{x) = 0 is soluble by
radicals if and only if the Galois group of the polynomial f is soluble.

Analogous to Galois theory is the Picard-Vessiot theory in which groups
are used to study extensions of differential rings and where, in particular, the
question of the solubility by quadratures of differential equations is
resolved. The role which in Galois theory is played by permutation groups, is
in the Picard~Vessiot theoty assumed by algebraic groups of matrices.

In these examples groups arise as groups of automorphisms of mathema-
tical structures. Not only is this one of the most important ways in which they
occur, but also, generally speaking, this guise is peculiar to groups and
secures for them a special position in algebra. The reason for this is that one
may always, in the words of Galois, “group’ the automorphisms of any
structure, while it is only in special cases that a ring structure or some other
useful structure can be defined conveniently on the set of automorphisms.

2. Homology groups. The central idea of homology theory involves the
application of the theory of (abelian) groups to the study of the category of
topological spaces. With each space X is associated a sequence of abelian
groups Ho(X), Hy(X),..., and with each continuous map f: XY, a
sequence of homomorphisms f,: H.(X)>H,.(Y),n=0,1,2,.... The
study of the homology groups H,(X) and their homomorphlsms by the
methods of group théory often allows the solution of problems originaliy

“topological in nature. A typical example is the extension problem: Can a
map g: A - Y, defined on a subspace A of the space X be extended to all of
Xii €.cang be exprCSSed as the compos:te of the inclusion map /- A+ X,
and some continuous map §: X - Y? If thé answer is yes, then by homology
theory we must have g, = §.h,, i.e. each homorphism g,: H, (A)» H,(Y),
can be factored through H,(X), with the factor h, given. If this algebraic

problem has a negative solution then, aocordmg to the theory, so does the
original topological problem.

With this method important posmve results can be obtained. By way of
illustration we sketch a proof of Brouwer’s fixed-point theorem: Every -
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continuous map f of the n-dimensional ball E” to itself has a fixed point.
Suppose, on the contrary, that f(x) # x for all x € E". Suppose the half-line
beginning at f(x) and passing through the point x meets the sphere $" ' (the
boundary of E") at the point g(x). Obviously g is continuous, and restricts to
the identity map on S"”'. Therefore tke identity map on $"~! can be
extended to a continuous map E" +S""'. For n =1 this gives a contradic-
tion at once. If for n =2 we compute the homology groups with coefficients
from the group Z of integers, we find that H,_(E")=0, H,_(S" ") =
Z, hy-y =0, g.—1 =1, whence it is clear that the answer to the corresponding
algebraic problem is in the negative, yielding a second, and final, contradic-
tion.

This example from homology theory illustrates a typical mode of appli-
cation of algebra (in particular group theory) to the study of non-algebraic
objects: propeities of the latter are elicited with the aid of algebraic systems
(in particular groups) which mirror some of their structure. Such is the basic
technique of algebraic topology. In the last few decades analogous tech-
niques have been evolved, and used successfully, for studying algebraic
systems themselves (for example in the theory of group extensions).

3. Symmetry groups. As mentioned above, the group concept allows us
to give a precise meaning to the formerly slightly vague idea of the symmetry
of a geometrical figure. Using this sort of approach E. S. Fedorov (1890)
solved the problem, fundamental for crystallography, of classifying the
regular arrangements, or lattices, of points in the Euclidean plane and in
space. There turned out to be altogether just 17 planar Fedorov groups,
which he discovered immediately, and 230 spatial Fedorov groups, the
exhaustive classification of which relied in an essential way on group theory.
This represented the first direct application of group theory to the natural
sciences.

Group theory plays an analogous role in physics. Thus in quantum
mechanics the state of a physical system is represented by a point of an
infinite-dimensional vector space. If the system undergoes a change of state
then its representing point is subjected to a certain linear transformation.
Here, in addition to considerations of symmetry, the theory of represen-
tations of groups by linear transformations is important,

These examples illustrate the classifying role played by groups wherever
symmetry is involved. In questions of symmetry one is dealing essentially
with automorphisms of structures (not necessarily mathematical), so that in
such questions group theory is irreplaceable. In mathematics itself this
classifying function is of great utility: of this Klein’s Erlanger Programm is
sufficient testimony. ‘

To summarize: the group concept, fundamental in modern mathematics,
is a highly versatile tool for mathematics itself: it is used as an important
constituent of many algebraic systems (e.g. rings, fields), as a sensitive
register of the properties of various topological objects, as a proving-ground
for the theory of algorithmic decidability, and in many other ways. It
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provides, in addition, a sensitive instrument for investigating symmetry, one
of the most pervasive and elemental phenomena of the real world.

We conclude by listing some of the more important classes of groups.

The oldest branch of group theory, which is nonetheless developing as
intensively now as it ever did in the past, is the theory of finite groups. In this
theory the predominant activity at present is the search for finite simple
groups: these embrace many of the classical groups of matrices over fieids,
several series of groups of automorphisms of Lie algebras, and certain
isolated, ‘‘sporadic™ groups. At the opposite end of the spectrum we have
the finite soluble groups, where interest is usually concentrated on specific
systems of subgroups (Hall, Carter subgroups, etc.), determining in large
measure the structure of the group itself. Finite groups often arise as groups
of permutations, or as matrices over finite fields; a large, and to some extent
independent, segment of finite group theory occupies itself with the study of
representations of groups by permutations and matrices.

In the theory of infinite groups the technique of broadest application
consists in the imposition of one or another “finiteness condition”. Among
the classes resulting from the myriad such conditions the following come in
for most attention: periodic groups, locally finite groups, groups with the
maximal condition on subgroups, groups with the minimal condition on
subgroups, finitely generated groups, groups of finite rank, and residually
finite groups.

In abelian group theory the leading roles are played by the classes of:
divisible abelian groups, torsion-free abelian groups, and by periodic abel-
ian groups and their pure and primary subgroups. The study of general
abelian groups reduces in large measure to applications of the theories of
these particular classes and the theory of extensions of abelian groups, the *
methodology of which is largely homological in nature.

The classes of nilpotent and soluble groups, larger than that of abelian
groups, can also boast of highly developed theories. Of the teeming general-
izations of nilpotence and solubility we mention only: local nilpotence, the
normalizer condition, the Engel condition, and the multitude of classes of
groups defined by the possession of a subnormal system of one kind or
another, '

Several important classes of groups are obtained by imposing additional
structures linked in some way to the group operation. Under this head fall,
for instance, topological groups, Lie groups, linear groups and orderable
groups.

Of the remaining classes we make mention of only: groups free in some
variety, divisible (non-abelian) groups, groups having some property
residually, automorphism groups of various mathematical structures, groups
determined by conditions on their generators and defining relations, and
groups with prescribed subgroup-lattices.
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Definition and Most Important
Subsets of a Group

§1. Definition of a Group
1.1. Axioms. Isomorphism

Every mathematical theory reduces ultimately to the study of two kinds of
objects: sets and functions on sets. If the arguments of a function f run
through a set M, in which the function also takes its values, then f is called an
algebraic operation on M. That study which concerns itself with algebraic
operations is called algebra. Viewed this way, algebra is concerned only with
how one or another algebraic operation acts, and not at all with the set on
which it is defined. The concept of isomorphism allows us to shift attention
from the second of these concerns and concentrate on the first. Suppose two
sets are given, together with one or more operations on each, and that there
is a one-to-one correspondence between the sets themselves, and also
between the sets of operations on them, such that corresponding operations
are functions of the same number of variables and take corresponding values
when the variables are assigned corresponding values. The sets with their
operations are then said to be isomorphic. Isomorphic objects have identical
structures as far as their operations are concerned, so that in algebra they are
either not distinguished or else are regarded as exact copies of each
other—much as we regard copies of a novel as being the same. even though
printed with different types and on different paper, if we are interested only
in the content. It makes sense to regard each class of isomorphic objects as
exactly determining a certain type of algebraic operation. This reduces the
problem of algebra—the study of algebraic operations—to the more
concrete problem of the study of sets with operations with accuracy only up
to isomorphism. ‘



2 1. Definition and Most Important Subsets of a Group

Certain kinds of algebraic operation are met with so frequently in
mathematics that they have become the objects of study of independent
_theories. One such is the operation defining the group concept—the object
of study of the theory of groups. A group is a set with one binary (i.e.
two-variable) operation, satisfying certain axioms. The value of a binary
operation f on a pair of elements x, y is more conveniently written, not as
f(x,y) as for other functions, but as xfy——this notation economises on
symbols and accords well with the usual notation for numerical operations:
after all we write 2+3 =35, and not +(2,3)=35. In a group the binary
operation is generally called multiplication and denoted by a dot (which is
almost always omitted); more rarely, +, o, *, and other symbols are used. The
dot notation is sometimes also referred to as the multiplicative notation,
while that employing the plus sign is called the additive notation.

1.1.1. Definition. A set G with a binary operation - is called a group, if:

1. the operation is associative; i.e. (ab)c = a(bc) for all a, b, ¢ in G;

2. the operation guarantees an identity element; i.e. in G there is an
element e—<called the identity element—such that ae =ea =a foralla in G;

3. the operation guarantees inverse elements; i.e. for each a in G there is
in G an element x—<called the inverse of a—such that ax = xa =e.

1.1.2. Definition. A set G with binary operation - is called a group, if

1. the operation is associative;

2. the operation guarantees left and right quotients; i.e. for each pair of
elements a, b in G there are G elements x, y—called respectively lefr and
right quotients of b by a——such that ax = b, ya =b.

1.1.3. Exercise. Definitions 1.1.1 and 1.1.2 are equivalent. The identity
element of any group G is unique. Each element a in G has a unique inverse
(denoted by a™'). For each pair of elements a, & in G both quatients of b by
a are unique. (We write a\b for the left quotient, and b/a for the right
quotient.)

In accordance with the usual group-theoretic terminology we call a
one-to-one product preserving mapping ¢ from one group onto another an
isomorphism. In other words a map from a group G to a group G* (in
symbols ¢:G - G*) is an 1somorphlsm, if, firstly, distinct elements have
distinct images; i.e. writing a® for the image of a under the map &,

a® # b® whenever a # b, a, bed,

secondly, every element of G* has the form g® for some g € G, and, finally,
the image of a product is the product of the images;

(ab)* = a®b®.

The two groups are then said te be isomorphic {(in symbols G = G*).
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For example, the set G of positive real numbers is a group under the usual
multiplication of numbers; the set G* of all real numbers is a group under
the usual addition of numbers; and the map ¢: G- G*, defined by the
formula a® =1log a, is an isomorphism between G and G*. When we use a
logarithmic slide-rule we are simply reaping the benefits of this iso-
morphism. The concern of group theory is to study group operations, or,
what amounts to the same thing, groups up to isomorphism. The theory of
groups would be complete once a catalogue of all possible groups up to
isomorphism were compiled. Happily for group theory, but unhappily for its
applications, the compilation of such a catalogue is in practice impossible.

1.2. Examples

Thanks to the associative law for groups the element (ab)c = a(bc) may be
written simply as abc; for the same reason the product a;a;---a, of n
elements—without bracketing but in the given order—is uniquely defined.
The productof n elements all equal to a is called the nth power of the element
a, and is denoted by a". For zero and negative integers n we define a®=e¢,
=@ ™ lora -f(a") ", which as it is easy to see, are equivalent.

1.2.1. Exercise. If a is any element of a group and m, n are integers, then
a a __am+n (am)n_amn

It may happen that ¢" = e for some n >0, in which case, if a # ¢, the
smallest n with this property is called the order or period of the element a
and is denoted by la). If a" # e for every n >0, the element a is ascribed
infinite order and we write |a| =

1.2.2. Exercise. If a” = ¢ then |a] divides n.

1.2.3. Exercise. If the elements a, b commute, i.e. ab = ba, and their orders
are relatively prime, then |ab|=|a]| - |b].

1.2.4. Exercise. Suppose elements g, b commute and have orders m, n.
Then the group contains an element—not always the product ab—whose
order is the lowest common multiple of m and n.

We say that a group G is torsion-free if every nonidentity element of G has
infinite order. If on the other hand every element of G has finite order then
we say that G is periodic. If the orders of all the elements of a periodic group
are bounded, then the lowest common multiple of their orders is called the
exponer:t of the group. Let p be a prime, If the orders of all the elements of a
perictic group are powers of p, then we call the group a p-group. The
cardinal |G| of the group G is called the order of G. If this cardinal is finite
then we say that the group is finite; and in the contrary case infinite. If the
operation in the group G is commutative, i.e. ab = ba for ali g, & in G, thenit



