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Freface

Computation is an integral part of modern science and the
ability to exploit effectively the power offered by computers is
therefore essential to a working physicist. The proper application
of a computer to modeling physical systems is far more than blind
“"number crunching”, and the successful computational physicist
draws on a balanced mix of analytically soluble examples, physical
intuition, and numerical work to solve problems which are other-
wise intractable. '

Unfortunately, the ability "to compute’ is seldom cultivated by
the standard university-level physics curriculum, as it requires an
integration of three disciplines (physics, numerical analysis, and
computer programming) covered in disjoint courses. Few physics
students finish their undergraduate education knowing how to
compute; those that do usually learn a limited set of techniques in
the course of independent work, such as a research project or a
senior thesis.

The material in this book is aimed at refining computational
skills in advanced undergraduate or beginning graduate students
by providing direct experience in using a computer to model phy-
sical systerns. Its scope includes the minirnum set of numerical
techniques needed to do physics” on a computer. Each of these is
developed in the text, often heuristically, and is then applied to
solve non-trivial problems in classical, quantum, and statistical
physics. These latter have been chosen to enrich or extend the
standard undergraduate physics curriculum, and so have consid-
erable intrinsic interest, quite independent of the computational
principles they illustrate.

This book should not be thought of as setting out a rigid or
definitive curriculum. I have restricted its scope to calculations
which satisfy simultaneously the criteria of illustrating a widely
applicable numerical technique, of being tractable on a microcom-
puter, and of having some particular physics interest. Several
important numerical techniques have therefore been omitted,
spline interpolation and the Fast Fourier Transform among them.
Computational Physics is perhaps best thought of as establishing
an environment offering opportunities for further exploration.
There are many possible extensions and embellishments of the
material presented; using one's imagination along these lines is
one of the more rewarding parts of working through the book.

Computational Physics is primarily a physics text. For max-
imum benefit, the student should have, taken, or be taking,
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undergraduate courses in classical mechanics, quantum mechan-
ics, statistical mechanics, and advanced calculus or the
mathematical methods of physics. This is not a text on numerical
analysis, as there has been no attempt at rigor or completeness in
any of the expositions of numerical techniques. However, a prior
course in that subject is probably not essential; the discussions of
numerical techniques should be accessible to a student with the
physics background outlined above, perhaps with some reference
to any one of the excellent texts on numerical analysis (for exam-
ple, [Ac70], [Bu81], or [Sh84]). This is also not a text on computer
programming. Although I have tried to follow the principles of

. good programming throughout (see Appendix B), there has been
no attempt to teach programming per se. Indeed, techniques for
organizing and writing code are somewhat peripheral to the main
goals of the book. Some familiarity with programming, at least to
the extent of a one-semester introductory course in any of the
standard high-level languages (BASIC, FORTRAN, PASCAL, C), is
therefore essential.

The choice of language invariably invokes strong feelings
among scientists who use comnputers. Any language is, after all,
only a means of expressing the concepts underlying a program.
The contents of this book are therefore relevant no matter what
language one works in. However, some language had to be chosen
to implement the programs, and I have selected the Microsoft
dialect of BASIC standard on the IBM PC/XT/AT computers for this
purpose. The BASIC language has many well-known deficiencies,
foremost among them being a lack of local subroutine variables
and an awkwardness in expressing structured code. Nevertheless,
I believe that these are more than balanced by the simplicity of
the language and the widespread fluency in it, BASIC's almost
universal availability on the microcomputers most likely to be
used with this book, the existence of both BASIC interpreters con-
venient for writing and debugging programs and of compilers for
producing rapidly executing finished programs, and the powerful
graphics and 1/0 statements in this language. | expect that
readers familiar with some other high-level language can learn
enough BASIC "on the fly" to be able to use this book. A synopsis
of the language is contained in Appendix A to help in this regard,
and further information can be found in readily available manuals.
The reader may, of course, elect to write the programs suggested
in the text in any convenient language. )

This book arose out of the Advanced Computational Physics
Laboratory taught to third- and fourth-year undergraduate Phy-
sics majors at Caltech during the Winter and Spring of 1984. The
content and presentation have benefitted greatly from the many
inspired suggestions of M.-C. Chu, V. Ponisch, R. Williams, and D.
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Meredith. Mrs. Meredith was also of great assistance in producing
the final form of the manuscript and programs. I also wish to
thank my wife, Laurie, for her extraordinary patiente, understand-
ing, and support during my two-year involvement in this project.

. Steven E. Koonin
. Pasadena
- Moy, 1985
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How to useth/t,s book

This book is organized into chapters, each containing a text
section, an example, and a project. Each text section is a brief
discussion of one or several related numerical techniques, often
illustrated with simple mathematical examples. Throughout the
text are a number of exercises, in which the student’s understand-
ing of the material is solidified or extended by an analytical
derivation or through the writing and running of a simple program.
These exercises are indicated by the symbol B8 8 in the outer
margin. '

The example and project in each chapter are applications of
the numerical techniques to particular physical problems. Each
includes a brief exposition of the physics, followed by a discussion
of how the numerical techniques are to be applied. The examples
and projects differ only in that the student is expected to use (and
perhaps modify) the program which is given for the former in
Appendix B, while the book provides guidance in writing programs
to treat the latter through a series of steps, also indicated by the
symbol D00 in the outer margin. However, programs for the
projects have also been included in Appendix C; these can serve as
models for the student’s own program or as a means of investigat-
ing the physics without having to write a major program 'from
scratch”. A number of suggested studies accompany each exam-
ple and project; these guide the student in exploiting the pro-
grams and understanding the physical principles and numerical
techniques involved.

The diskeite included with this book (360 kB, double-sided,
double-density format) also contains the BASIC source codes for
the examples and projects; it is suitable for use on any microcom-
- puter systemn operating under MS-DOS Version 2.0 or higher.
Further information about these programs can be found at the
beginning of Appendix B and in the file README on the diskette,
which can be read by inserting the diskette into the default disk
drive and entering the DOS command "TYPE README". Note that
it is wise to back up this write-protected diskette before beginning
to use the programs. '

An attempt has been made to use only the most primitive
BASIC statements, so that the codes for the projects and examples
should be appropriate for most BASIC dialects. All of the programs
will run under a BASIC interpreter, but most require enough com-
putation.to make execution speed an important consideration. For
serious study, it is therefore recommended that the codes be
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compiled through the IBM or Microsoft BASIC compiler, after which
they will run between five and ten times faster. The programs have
also been written in such as way as to make relatively straightfor- -
ward their transcription into another high-level language, such as
FORTRAN.

A "laboratory” format has proved to be one effective mode of
presenting this material in a university setting. Students are quite
able to work through the text on their own, with the instructor
being available for consultation and to monitor progress through
brief personal interviews on each chapter. Three chapters in ten
weeks (60 hours) of instruction has proved to be a reasonable
pace, with students typically writing two of the projects during
this time, and using the "canned'’ codes to work through the phy-
sics of the remaining project and the examples. The eight
chapters in this book should therefore be more than sufficient for
a one-semester course. Alternatively, this book can be used to pro-
vide supplementary material for the usual courses in classical,
quantum, and statistical mechanics. Many of the examples and
projects are vivid illustrations of basic concepts in these subjects
and are therefore suitable for classroom demonstrations or
independent study.

This book should not be thought of as setting out a rigid or
definitive curriculum. 1 have restricted its scope to calculations

which satisfy simultaneously the criteria of illustrating a widely

applicable numerical technique, of being tractable on a microcom-
puter, and of having some particular physics interest. Several
important numerical techniques have therefore been omitted,
spline interpolation and the Fast Fourier Transform among them.
Computational Physics is perhaps best thought of as establishing
an environment offering opportunities for further exploration.
There are many possible extensions and embellishments of the
material presented; using one's imagination along these lines is
one of the more rewarding parts of working through the book.
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Chapter 1

Basic
Mathematical
Operations

Three numerical operations - differentiation, quadrature, and
the finding of roots - are central to most computer modeling of
physical systems. Suppose that we have the ability to calculate
the value of a function, f(z), at any value of the independent vari-
able z. In differentiation, we seek one of the derivatives of f at a
given value of zx. Quadrature, roughly the inverse of
differentiation, requires us to calculate the definite integral of f
between two specified limits {we reserve the term "integration’ for
the process of solving ordinary differential equations, as discussed
in Chapter 2), while in root finding we seek the values of z (there
may be several) at which f vanishes. :

If f is known analytically, it is almost always possible, with
enough fortitude, to derive explicit formulas for the derivatives of
f. and it is often possible to do so for its definite integral as well.
However, it is often the case that an analytical method cannot be
used, even though we can evaluate f(z) itself. This might be
either because some very complicated numerical procedure is
required to evaluate f and we have no suitable analytical formula
upon which to apply the rules of differentiation and quadrature,
or, even worse, because the way we can generate f provides us
with its values at only a set of discrete abscissae. In these situa-
tions, we must employ approximate formulas expressing the
derivatives and integral in terms of the values of f we can com-
pute. Moreover, the roots of all but the simplest functions cannot
be found analytically, and numerical methods are therefore essen-
tial.

This chapter deals with the computer realization of these
three basic operations. The central technique is to approximate f
by a simple function (such as first- or second-degree polynomial)
upon which these operations can be performed easily. We will
derive only the simplest and most commonly used formulas; fuller
treatments can be found in many textbooks on numerical analysis.

8750220



2% 1. Basic Mathematical Operations

fo

X_z=-3h X_(=-h  X;=h  X3:3h
X_2=-2h XO=O X2=2h

Figure 1.1 Values of f on an equally-spaced lattice.
Dashed lines show the linear interpolation.

1.1 Numerical differentiation ’ v

Let us suppose that we are interested in the derivative at £=0,
f'(0). (The formulas we will derive can be generalized simply to
arbitrary z by translation.) Let us also suppose that we know f on
an equally-spaced lattice of z values,

fn:f(xn); x‘n:nh (n:Orilv:tzv t ')'
and that our goal is to compute an approximate value of f'(0) in
terms of the f, (see Figure 1.1).

We begin by using a Taylor series to expand f in the neighbor-
hood of z=0: :

2 3 ’
F(@)=f graf + Zof T (L)

where all derivatives are evaluated at £=0. It is then simple to
verify that

) "_ftr:—f (x=th)=fothf'+ —’};—f”t —héif”'+0(h4), (1.2a)

feo=f (z=+2h)=f o:2hf +2RES "+ ig-—s-f “+0(hY),  (1.2b)

where O(h%) means terms of order h% or higher. To estimate the
size of such terms, we can assume that f and its derivatives are
all of the same order of magnitude, as is the case for many func-
tions of physical relevance. 7
Upon subtracting f _; from f, as given by (1.2a), we find, after
a slight rearrangement,
L

f'——————i‘-'g—f"'w(ﬂ‘l)l | (1.3a)
2 T8 ' , '



1.1 Numerical differentiation

"

The term involving f'" vanishes as h becomes small and is the
dominant error associated with the finite difference approximation
that retains only the first term:

f zf‘;hf -1 (1.3b)

This "3-point" formula would be exact if f were a second-degree
polynomial in the 3-point interval {—h, +h ], because the third- and
all higher-order derivatives would then vanish. Hence, the essence
of Eq. (1.3b) is the assumption that a quadratic polynomial inter-
polation of f through the three points z=th, 0 is valid.

Equation {1.3b) is a very natural result, reminiscent of the for-
mulas used to define the derivative in elementary calculus. The
error term (of order h?) can, in principle, be made as small as is
desired by using smaller and smaller values of h. Note also that
the symmetric difference about =0 is used, as it is more accu-
rate (by one order in h) than the forward or backward difference
formulas: ‘

f’“-ﬁ:ﬁ—+'0(h); (1.4a)

f asf"—f =L+ 0(R). (1.4b)

These "2-point” formulas are based on the assumption that f is
well approximated by a linear function over the intervals between
z=0and z=th. ,

.~ As a concrete example, consider evaluating f'(z=1) when
f(?)=sinz. The exact answer is, of course, cos1=0.540302. The
following BASIC program evaluates Eq. (1.3b) in this case for the
value of h input: o

10 X=1: EXACT=COS(X)

20 INPUT "enter value of h (<=0 to stop)":H

30 IF H«=0 THEN STOP

40 FPRIME = (SIN(X+H)-SIN(X-H))/(2*H)

50 DIFF=EXACT-FPRIME

80 PRINT USING “h=§ . f#####. ERROR=+§. $##44#" H,DIFF
70 GOTO 20

(If you are a beginner in BASIC, note the way the value of H is

requested from the keyboard, the fact that the code will stop if a -

non-positive value of H is entered, the natural way in which varl—
able names are chosen and the mathematical formula (1.3b} is
transcribed using the SIN function in line 40, the way in which'the
number of significant digits is specified when the result is to be
output to.the screen in line 60, and the jump in program concrol in

3
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Table 1.1 Error in evaluating dsinz/ dz |, -,=0.540302

Symmetric Forward Backward Symmetric

3-point 2-point 2-point S5-point

h Eq. (1.3b) Eq.(1.4a) Eq. (1.4b) Eq. (1.5)
0.50000 0.022233 0.228254 -0.183789 0.001092
0.20000 0.003595 0.087461 -0.080272  0.000028
0.10000 0.000899 0.042938 -0.041139 0.000001
0.05000 0.000225 0.021258 -0.020808 0.000000
0.02000 0.000037 0.008453 -0.008380 0.000001
0.01000 0.000010 0.004224 -0.004204 0.000002
0.00500 0.000010 0.002108 -0.002088 0.000006
0.00200 -0.000014 0.000820 -0.000848  -0.000017
0.00100  -0.000014 0.000403 -0.000431 -0.000019
0.00050 0.000105 0.000403 -0.000193 * 0.000115
0.00020 -0.000163 -0.000014 -0.000312 -0.000188
0.00010 -0.000312 -0.000312 -0.000312 -0.000411
0.00005 0.000284 0.001476 -0.000908 0.000681
0.00002 0.000880 0.000880  0.000880 0.000873
0.00001 0.000880 0.003860__ -0.002100 0.000880

line 70.)

Results generated with this program, as well as with similar
ones evaluating the forward and backward difference formulas
Egs. {1.4a,b), are shown in Table 1.1. Note that the result improves
as we decrease h, but only up to a point, after which it becomes
worse. This is because arithmetic in the computer is performed
with only a limited precision {5-6 decimal digits for a single preci-
sion BASIC variable), so that when the difference in the numerator
of the approximations is formed, it is subject to large "round-off"
errors if h is small and f; and f_, differ very little. For example,
if h=107%, then

£ 1=sin(1.000001)=0.841472; f _,=sin (0.999999)=0.841470,
so that f,;—f_-;=0.000002 to six significant digits. When. substi-

tuted into (1.3b) we find f'~1.000000, a very poor result. However,
if we do the arithmetic with 10 significant digits, then

f1=0.8414715251; f _,=0.8414704445,

which gives a respectable f'~0.540300 in Eq. (1.3b). In this sense,
numerical differentigtion is an intrinsically unstable process (no
well-defined limit as h -+0), and so must be carried out with cau-
tion.



1.2 Numerical guadrature

It is possible to improve on the 3-point formula (1.3b) by relat-
ing f' to lattice points further removed from x=0. For example,
using Eqgs. (1.2), it is easy to show that the ""5-point’” formula

§ ™S 2B -1 +8f 11 ]+ O(h%) (1.5)

cancels all derivatives in the Taylor series through fourth order.
Computing the derivative in this wey assumes that f is well-
approximated by a fourth-degree polynomial over the 5-point
interval [-2h, 2h]. Although requiring more computation, this
approximation is considerably more accurate, as can be seen from
Table 1.1. In fact, an accuracy comparable to Eq. (1.3b) is obtained
with a step some 10 times larger. This can be an important con-
sideration when many values of f must be stored in the computer,
as the greater accuracy allows a sparser tabulation and so saves
storage space. However, because (1.5) requires more mathemati-
cal operations than does (1.3b) and there is considerable cancella-
tion among the various terms (they have both positive and nega-
tive coeflicients), precision problems show up at a larger value of
h.

Formulas for higher derivatives can be constructed by taking
appropriate combinations of Egs. (1.2). For example, it is easy to
see that ’

I 1—Rf ot f 1=hZf "+ 0(h%), (1.6)

so that an approximation to the second derivative accurate to
order h?is
—2fotf -
f”%fl fO f 1 ] (17)
Difference formulas for the various derivatives of f that are
accurate to a higher order in A can be derived straightforwardly.
Table 1.2 is a summary of the 4- and 5-point expressions.

Exercise 1.1 Using any function for which you can evaluate the
derivatives analytically, investigate the accuracy of the formulas
in Table 1.2 for various values of h.

1.2 Numerical quadrature

In quadrature, we are interested in calculating the definite
integral of f-between two limits, a<b. We can easily arrange for
these values to be points of the lattice separated by an even
number of lattice spacings; i.e.,

Nng—-a,!
h

5
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