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Preface to the second edition

Besides the very obvious change from German to English, the second
edition of this book contains many additions as well as a great many
other changes. It might even be called a new book altogether were it not
for the fact that the essential character of the book has remained the
same; in other words, the entire presentation continues to be based on
an axiomatic treatment of linear spaces.

In this second edition, the thorough-going restriction to linear spaces
of finite dimension has been removed. Another complete change is the
restriction to linear spaces with real or complex coefficients, thereby
removing a number of relatively involved discussions which did not
really contribute substantially to the subject. On p. 6 there is a list
of those chapters in which the presentation can be transferred directly
to spaces over an arbitrary coefficient field.

Chapter I deals with the general properties of a linear space. Those
concepts which are only valid for finitely many dimensions are discussed
in a special paragraph.

Chapter II now covers only linear transformations while the treat-
ment of matrices has been delegated to a new chapter, chapter II1. The
discussion of dual spaces has been changed; dual spaces are now intro-
duced abstractly and the connection with the space of linear functions is
not established until later.

Chapters IV and V, dealing with determinants and orientation
respectively, do not contain substantial changes. Brief reference should
be made here to the new paragraph in chapter IV on the trace of an
endomorphism — a concept which is used quite consistently throughout
the book from that time on.

Special emphasize is given to tensors. The original chapter on Multi-
linear Algebra is now spread over four chapters: Multilinear Mappings
(Ch. VI), Tensor Algebra (Ch. VII), Exterior Algebra (Ch. VIII) and
Duality in Exterior Algebra (Ch.IX). The chapter on multilinear
mappings consists now primarily of an introduction to the theory of the
tensor-product. In chapter VII the notion of vector-valued tensors has
been introduced and used to define the contraction. Furthermore, a
treatment of the transformation of tensors under linear mappings has been
added. In Chapter VIII the antisymmetry-operator is studied in greater
detail and the concept of the skew-symmetric power is introduced. The
dual product (Ch. IX) is generalized to mixed tensors. A special paragraph
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in this chapter covers the skew-symmetric powers of the unit tensor and
shows their significance in the characteristic polynomial. The paragraph
“Adjoint Tensors” provides a number of applications of the duality theory
to certain tensors arising from an endomorphism of the underlying space.

There are no essential changes in Chapter X (Inner product spaces)
except for the addition of a short new paragraph on normed linear spaces.
In the next chapter, on linear mappings of inner product spaces, the
orthogonal projections (§ 3) and the skew mappings (§ 4) are discussed
in greater detail. Furthermore, a paragraph on differentiable families of
automorphisms has been added here.

Chapter XII (Symmetric Bilinear Functions) contains a new para-
graph dealing with Lorentz-transformations.

Whereas the discussion of quadrics in the first edition was limited to
quadrics with centers, the second edition covers this topic in full.

The chapter on unitary spaces has been changed to include a more
thorough-going presentation of unitary transformations of the complex
plane and their relation to the algebra of quaternions.

The restriction to linear spaces with complex or real coefficients has
of course greatly simplified the construction of irreducible subspaces in
chapter XV. Another essential simplification of this construction was
achieved by the simultaneous consideration of the dual mapping. A final
paragraph with applications to Lorentz-transformation has been added
to this concluding chapter.

Many other minor changes have been incorporated — not least of which
are the many additional problems now accompanying each paragraph.

Last, but certainly not least, I have to express my sincerest
thanks to everyone who has helped me in the preparation of this second
edition. First of all, I am particularly indebted to CORNELIE J. RHEIN-
BOLDT who assisted in the entire translating and editing work and to
Dr. WErNER C. RHEINBOLDT who cooperated in this task and who also
made a number of valuable suggestions for improvements, especially in
the chapters on linear transformations and matrices. My warm thanks
also go to Dr. H. BoLDER of the Royal Dutch/Shell Laboratory at
Amsterdam for his criticism on the chapter on tensor-products and to
Dr. H. H. KeLLER who read the entire manuscript and offered many
important suggestions. Furthermore, I am grateful to Mr. GIORGIO
PEDERZOLI who helped to read the proofs of the entire work and who
collected a number of new problems and to Mr. KHADJA NESAMUDDIN
KHAN for his assistance in preparing the manuscript.

Finally I would like to express my thanks to the publishers for their
patience and cooperation during the preparation of this edition.

Toronto, April 1963 WEeRNER H. GREUB
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Chapter I
Linear spaces

§ 1. The axioms of a linear space

1.1. Additive groups. A set E: (x,y...) is called an additive group if
to every pair x and y there is assigned a third element of E, called the
sum of x and y and written as x + y, such that the following axioms
hold:

L1, x + y =y + x (commutative law)

12. (x+ ) + z==x+ (y + 2) (associative law)

1.3. There exists a zero-element O such that x + 0 = x for every
x CE. .

I.4. To every element x there exists an inverse element — x such that
x4+ (—2x)=0.

The zero-element is uniquely determined. In fact, assume there are
two such elements 0 and 0’. Then for every x € E

x+0=x and x4+0 ==x.

Substituting x = 0’ in the first and x = 0 in the second equation we
obtain

04+0=0 and 04+0 =0
and hence by the commutative law 0 = 0’.

For every x € E, there is only one inverse element —x. We prove
more generally that to any two elements a and b there is exactly one
element x such that

x+a=5b. (1.1)

To show first the uniqueness, let x, and x, be two solutions of (1.1). Then
. % +a=b and x+a=1b

and consequently

nn+a=x+a.

Now let —a be a negative element of a. Adding — a to the above equation
we obtain by the associative law

%+ (@4 (—a) =2+ (a+ (—a)

and hence x, = x,. This result applied to the vector & = 0 yields the
uniqueness of —a.
Greub, Linear Algebra, 2. Edition 1
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To show that (1.1) always has a solution, consider the element

x=b+(—a). (1.2)
Then
x+a=b+(—a)+a=50+0=5b.
The element x defined by (1.2) is called the difference of b and a and is
denoted by & — a.

1.2. Real linear spaces. A real linear space or real vector space is an
additive group with the following additional structure: There is defined
a multiplication between the real numbers 4, 4 ... and the elements
of E; in other words, to every pair (4, ) an element Ax of E is assigned,
subject to the following axioms:

IL1. (A p) x = A(u x) (associative law)
I12. A+ p)x=24x+ ux

Ax+y)=Ax+ Ay
I13. 1-x=ux.

The elements of a linear space are called vecfors and the coefficients
scalars. From the first distributive law II.2 we obtain by inserting

} (distributive laws)

pn=0
Ad=2Ax+0-%
and adding the vector — (1x)
0-x=0%).
Similarly, the second law I1.2. yields for y = 0
A-0=0.

These two equations state that Az = 0if 1 = 0 or x = 0. Conversely, the
equation Ax =0 implies that A= 0 or x=0. In fact, assume that
A== 0. Then it follows from the axioms I1.3 and IL1. that
1 1 1
%=1 -x=(7-l)x=7(1x)=7-0=0.

Altogether we have shown that Ax = 0 if and only if A=0 or x = 0.
Substituting # = — 1 in the first distributive law we obtain

Ax+ (—Ax) =0,
whence
(=) x=—Ax.
Similarly, the second distributive law yields
Al—2)=— Ax.

*) It should be observed that the symbol 0 on the left-hand side denotes the
scalar zero and on the right-hand side the vector zero.
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Finally we observe that the two distributive laws hold for any

finite number of terms,
( P 2.') x=23 A"x

12".=21xv

as can be shown by induction.
1.3. Examples: 1. Consider the set of all ordered z-tuples of real

numbers
x=(&...8)
where # is a fixed integer. Addition of two n-tuples
x=(...8 and y=(p...9"
is defined by
s+y=(E4n... .80+

and multiplication by a real number by
Ax = (A&, ... A&7 .

The linear space thus obtained is called the real n-dimensional number-
space and is denoted by R". Its zero-vector is the #-tuple

0=(0...0)
and the inverse of a vector x is given by the n-tuple
—x=(—&...-f.

2. Denote by C the set of all real valued continuous functions fin
the interval 0 < ¢ < 1. Defining addition and multiplication by a real
number as

F+e) @ =16 +2g0)

(AN) (&) = A1 (1)
we obtain a linear space. The zero-vector of this linear space is the
identically vanishing function.

Instead of all continuous functions we could also consider the set of
all differentiable functions or the set of all continuously differentiable
functions.

3. Let S be an arbitrary set. Consider all real valued functions in S
which assume the value zero except for finitely many points of S. If
addition and multiplication is defined as in example 2 this set becomes

a linear space C(S). For every element @ ¢ S denote by f, the function
defined by

and

lifx=a
f"(x)={0ifx#a.

1%
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Then every function f € C (S) can be written as a finite linear combination
f=XHa)fa
acd

| where A4 is the set of all points x for which f(x) 3 0. Iden.tifying every
point a €S with the corresponding function f, we can write the above

equation as
f=X}a)a.
ac4
In this notation a function f € C(S) appears as a "’formal linear combi-
nation’’ of the elements of S. .
The space C(S) is called the linear space generated by S.
1.4. Linear dependence. A system of p (p = 1) vectors (x, . . . %) of
a linear space E is called linearly dependent if there exist coefficients
(A1. .. A%, not all zero, such that
2 hx,=0.

Otherwise the vectors (x,...x,) are called linearly independent. One
single vector % is obviously linearly dependent if and only if x =0,

If the system (x,...x,) is linearly dependent, so is every other
system (%;...%,...x,) containing the vectors % ...%, In fact,
assume that

Ay 4o 4 P2, =0
with at least one A” 4= 0. Then the relation
11x1+---+ﬂ.”x,+0-x,+1+-'-O-xq=0

shows that the vectors (x,...x,) are again linearly dependent. In
particular, every system containing the zero-vector is linearly dependent.

From this result it follows that a system of linearly independent
vectors remains linearly independent if some vectors are omitted.

1.5. Cartesian Product. Consider two linear spaces E and F. Form
the product set E x F defined as the set of all pairs (x, y) with x ¢ E and
y €F. In E X F introduce addition and multiplication by real numbers
as follows :

(%1, 1) + (%2, 2) = (%, + %, Y1+ 5e)
Az, y) = (A%, Ay) .

It is easy to see that these two operations satisfy the axioms of a linear
space. The space E X F thus obtained is called the Cartesian product of E
and F. In the same way the Cartesian product of any finite number of
linear spaces can be defined.

1.6. Complex linear spaces. Instead of using real numbers as coefficients
in a linear space, one can also take complex numbers. In this way one
obtains a complex linear space. More precisely, let E be an additive group.
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Assume that to every complex number 4 and every vector x € E a vector
Ax €E is assigned such that the three axioms II of sec. 1.2 are satisfied.
Then E is called a complex linear space.

As an example, consider the set of all ordered n-tuples of complex
numbers

z=({'...0")
with operations defined as in sec. 1.3 for the real number-space. The
complex linear space C™ thus obtained is called the n-dimensional
complex number-space.

1.7. Linear spaces over an arbitrary coefficient-field. The only pro-
perties of the real or the complex numbers used in the axioms of a linear
space are those based upon the additive and multiplicative structure
of these numbers. This fact suggests the generalization of the concept of
a linear space by using as scalars the elements of an arbitrary commu-
tative coefficient-field.

A commutative field A is a set of elements «, §. .. with two opera-
tions, addition and multiplication, subject to the following conditions:

I. Laws of addition:

1. «+ = f + « (commutative law).

2. (x+ B)+ y=a+ (B + y) (associative law).

3. There exists an element 0 such that « + 0 = « for every element
acAd.

4. To every element « there exists an element —a such that
a+ (—a)=0.

The above axioms assert that A is an abelian group.

II. Laws of multiplication:

1. « = B (commutative law).

2. (@ B) y = a(B y) (associative law).

3. There exists an element £ € A such that ex = « for every « € A.

4. To every element a= 0 there exists an element «—! such that
ax~l=e¢.

III. The distributive law:

«(B+y)=aft+ay.

1.8. Let A be a given commutative field. A linear space over the
coefficient-field A is an additive group in which a multiplication

(A, x)>Ax, A€A, x¢E

is defined such that the axioms II of sec. 1.2 are satisfied*). All properties
derived from these axioms remain true for a linear space over an arbitrary
commutative coefficient-field.

*) The number 1 in axiom II.3 has to be replaced by e.
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For the sake of simplicity we shall concern ourselves in the following
chapters only with real and complex linear spaces. In other words,
whenever we speak about linear spaces without further specification, a
real or a complex space is understood. However, all the developments of
the chapters I, II, III, VI*) and VII apply word for word to a linear
space over an arbitrary commutative coefficient-field. The results of the
chapters IV, VIII and IX can be carried over to linear spaces over a
commutative coefficient-field, whose characteristic**) is different from 2.

Problems: 1. Show:

a) The set of all real numbers of the form a + b5 with ¢ and b
integers forms an additive group, ‘

b) the set of all real numbers of the form « + ]/?7 with « and B
rational forms a field,

c) the set of all complex numbers of the forms y 4 74 where y and ¢
are real and 7 = }/—1 forms a field.

2. Show that axiom II.3 can be replaced by the following one: The
equation Ax = 0 holds if and only if A= 0 or x = 0.

3. Given a system of linearly independent vectors (xi,...,x,),
prove that the system x,...x;+ A%,, ..., x,(¢<1) with arbitrary 4
is again linearly independent.

4. Show that the set of all solutions of the homogeneous linear
differential equation

a*y ay
am TPty =0,
where p and ¢ are functions of ¢, is a vector space.

5. Which of the following sets of functions are linearly dependent ?

a) f=3¢; fo=1t+5; [3=28; fa=(+ 1)
b) h=0¢+ 12 h=8—1; f;=22+2t—3 :

¢) h=1; fa=¢t; fs = e—%¢

d h=28; fa=t; =1

e) h=1—t;, fo=t(1—08);f,=1—1¢.
6. Let E be a real linear space. Consider the set E x E of ordered

pairs (x,y) with x €E and y ¢ E. Show that the set E x E becomes
a complex linear space C by the operations:

(*1, Y1) + (%3, ¥5) = (%1 + %9, 1 + ¥2)
and

(x+if) (x,y) = (@x — By, ay + Bx) (a, freal numbers) .

*) Except for the remarks about skew-symmetric mappings in sec 6.4.

**) Concerning the definition of the characteristic cf. VAN DER ‘WAERDEN,
Algebra.
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7. Are the vectors 2, = (1,0, 1); x,= (¢, 1, 0); %3= (¢, 2, 1 + .i) lix}early
independent in C3? Express x, = (1,2, 3) as a linear combination of
%y, %3, %5. Do the same for x5 = (2, 4, 4).

. § 2. Linear subspaces

1.9. Definition. A nonempty subset E; of a linear space E is called a
linear subspace if the following conditions hold:

L. Ifx€CE andy €E,, thenx +y €E,.

2. If x € E,, then Ax ¢ E, for every coefficient A.

The two above conditions are equivalent to the condition that E,,
with any two vectors x and y, contains all linear combinations Ax + By.

By substituting 2 = 0 in the second condition it follows that every
subspace contains the zero-vector. A subspace E, is called improper,
if E, consists of the entire space E or if E, reduces to the zero-vector:
otherwise E, is called a proper subspace.

Every nonempty set S in E determines a subspace called the kinear
closure of S. It consists of all possible finite linear combinations

x=) Ex, %, €S
with arbitrary coefficients &”.
1.10. Intersection and sum. Let E, and E, be two subspaces of E.
Then the set of all vectors contained in E, and in E, is again a linear
subspace. This subspace is called the intersection of E, and E; and is

denoted by E, N E,.
The sum of E; and E,, denoted as E, + E,, is the set of all vectors

X=2x+%, 5€E, x,CE%).
Obviously, E, + E, is a subspace of E, containing E, and E, as subspaces.

A vector x of the sum E, + E, can generally be decomposed as
% =% + %3 (% € E,, %, € E,) in different ways. Given two decompositions

X=2x+%, %¢CE, x,CE,
and
=x1+23, ¥ €E, x%¢E,
it follows that
Xy — X = X5~ %y
Hence, the vector
Z=% — 2

is contained in the intersection E, N E,. Conversely, let x = x, + x, be a

*) The sum E, 4 E, has to be distinguished from the set-theoretic union
E; U E, which in general is not a linear space. E, 4 E, is obviously the linear
closure of E, U E,.
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decomposition of x and z be an arbitrary vector of E, N E,. Then the

vectors
=%, —2 and x =24+ 2

form again a decomposition of x. It follows from this remark that the
vectors x, and x, are uniquely determined by x if and only if the inter-
section E, N E, reduces to the zero-vector. In this case the space E, + E,
is called the direct sum of E; and E, and is denoted by E,; @ E,.

In the same way as it is for two subspaces, the intersection and sum of
finitely many subspaces E; ( = 1. .. p) is defined. If any two spaces E;
and E; (1) have only the zero-vector in common, the space E, +...+ E,
is called the direct sum of the spaces E; (= 1...p).

1.11. Factor-space. Let E, be a subspace of E. Then an equivalence
relation among the vectors of E can be defined in the following way:
Two vectors x and x’ are to be equivalent, x ~ ', if ¥’ — x € E,. This
relation has indeed the three properties of an equivalence:

1. Reflexivity: x ~ x for every x € E, since x — x = 0 € E,.

2. Commutativity: x ~ x’ implies that &’ ~ x: If 2’ — x ¢ E,;, then
¥—2x' =~ (¥ —2x) CE,.

3. Transitivity: x ~ x" and &’ ~ x” implies that x ~ x”: If 2’ —x¢E,
and " — %’ €E;, then x”" — x = (v" — x') + (¥’ — x) € E,.

An equivalence relation induces a decomposition of the whole
space into classes of equivalent vectors. Two vectors x and ' of E are
in the same class if and only if they are equivalent. Any two classes C,
and C, are either disjoint or they coincide. In fact, assume that x ¢ C,nC,.
Then

x~x% and x~zx,

for every vector x; ¢ C; and every vector x, € C o~ This implies in view of
the transitivity that x; ~ x,, whence C, = C,.

Thus, every vector x ¢ E is contained in exactly one class. This
class will be denoted by Z. The class 0 containing the zero-vector co-
incides with the subspace E,. It should be observed that this is the only
class which is itself a linear subspace of E since the other classes do not
contain the zero-vector.

To get a geometric picture of the above decomposition let E be a
linear space of three dimensions and E, be a plane through 0. Then the
corresponding classes are the planes parallel to E,.

1.12. The linear structure of the factor-space. Consider the set of all
equivalence classes with respect to E,. This set can be made into a
linear space by defining the linear operations as follows: Let % and ¥
be two classes. Choose two vectors x €% and y €. Then the vector
%+ is contained in a certain class ¥ . This class does not depend
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on the choice of x and y but only on the classes Z and 7. In fact, taking
two other representatives x’ and y’, we have the relations

¥ —x€E, and y —y(€E,
and hence,
(@ +y) = +y) =G —2)+ (' -y CE.

This implies that

xl + yl ~% + y
and consequently, that

2¥+y=xFy.
The class ¥ + y therefore is uniquely determined by the classes £ and ¥
and so it is proper to call it the sum of £ and §:

P+5=%F7.

Similarly, the product A% is defined as the equivalence class of the
vector Ax where x is any representative of %,

Af=ix.
As in the case of the addition, it follows that this class depends only
on the class #.

It is easily verified that the two operations so defined satisfy the
axioms listed in sec. 1.1 and 1.2. Thus, the set of all classes becomes a
linear space, called the factor-space of E with respect to E, and denoted
by E/E,. It is also usual to call E/E, the quotient-space of E with respect
to E,. The zero-vector of the factor-space is the class 0.

If the subspace E, coincides with E, all vectors are equivalent and
hence there is only the class 0. In this case the factor-space E/E, reduces
to the zero-vector. If, in the opposite case, E; consists only of the zero-
vector , two vectors of E are equivalent if and only if they are equal and
so each class consists of exactly one vector. In this case the factor-space
coincides with E.

Problems: 1. Let (&, &2, £) be an arbitrary vector in R3. Which of
the following subsets are subspaces?

a) All vectors with # = £2 = £3,

b) all vectors with £2 =0,

c) all vectors with & = £2 — &3,

d) all vectors with £2=1.

2. Let S be an arbitrary subset of E and $ its linear closure. Show
that S is the intersection of all linear subspaces of E containing S.

3. Let E=E, ® E,; and F = F, & F, be two direct decompositions
of the spaces E and F. Show that the Cartesian product E x F can be
directly decomposed as follows:

EXF=EXF,®E,xF,.
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4. Assume a direct decomposition E = E,; ® E,. Show that in each
class of E with respect to E, there is exactly one vector of E,.

5. Let E be a plane and E, a straight line through the origin. What is
the geometrical meaning of the equivalence classes respect to E, ? Give
a geometrical interpretation of the fact that x ~ 2’ and y ~ 9’ implies

x+y~x+y.
§ 3. Linear spaces of finite dimension

1.13. Dimension. In general there are infinitely many linearly
independent vectors in a linear space. For instance, in the space of all
continuous functions f(#) (0 < ¢=< 1) all the powers ¢3¢ ... are
linearly independent. We shall be mainly concerned with linear spaces
having only finitely many linearly independent vectors. The maximal
number of linearly independent vectors of such a space E is called the
dimension of E and will be denoted by dimE.

A 1-dimensional linear space is called @ straight line and -a 2-dimen-
sional linear space is called a plane.

Let E be an n-dimensional linear space and E, be a subspace of E.
Since every system of linearly independent vectors of E, is also linearly
independent in E, the dimension of E, can be at most equal to the
dimension of E,

dimE, < dimE .
It will be shown in the next section that the equality holds only if
E,=E.
1.14. Basis. Let E be a linear space of dimension #n. A system of »

linearly independent vectors is called a basis of E. Then every vector
x can be uniquely represented as a linear combination

x=) Px,.

In fact, consider the # + 1 vectors %1 ... %, %. These must be linearly
dependent because there can be at most » linearly independent vectors
in E. Therefore a relation

2 Xx,+Ax=0 (1.3)

holds with at least one coefficient different from zero. In particular,
A= 0, since otherwise (1.3) reduces to

2 x,=0

which implies that 2= 0(» = 1...#). Thus the equation (1.3) can be
solved with respect to x, yielding

x= ——%—2 Ax, =3 bx,. (1.4)



