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PREFACE

In most countries gas transport and distribution systems consist of a large set of
highly integrated pipe networks operating over a wide range of pressures. The
ever growing demand for gas necessitates the development of gas transport
systems and distribution networks and these create further problems as-
sociated with the rational operation of the systems to ensure, on the one hand,
proper supply of gas to the consumers and, on the other hand, low system
operating costs. Proper (optimum with regard to a certain criterion) develop-
ment of a network, as well as its economically rational exploitation, are only
possible if simulation procedures are applied.

Simulation is an experiment carried out on a model; since the model is by
definition a faithful equivalent of the tested system and its input and output
signals can be identified with the relevant signals of the system, the conclusions
drawn from testing the model can be conveyed to the system under
consideration. In most practical cases the model inputs play the role of
independent variables. By testing the model we want to answer the question:
‘how will the system behave in a given situation?, i.e. what will be its output
signals if the input signals are known? We may also be interested in knowing
the values or variations of input signals of the system that will yield the
required values of the output signals. In view of the equivalence of the model
and the tested system, the results of the experimental test carried out in this way
on the model can be conveyed to the system. This sort of experimentation
(simulation study) can, in fact, be treated as experimenting with the system
with the use of a model. Simulation treated as an experiment with a model is
used to provide an answer to a concrete question posed by an engineer who is
analysing a given system — it is therefore a tool and not an end in itself,

Simulation of gas networks makes use of models of gas flow in pipes that
have been developed based on the physical laws controlling the processes of
flow. However, in view of the complexity of the problem (formulation of the
equations, dimension of the problem, complexity of the model) in most cases
we cannot do without a computer.

As has already been mentioned, simulation allows us to predict the
behaviour of gas network systems under different conditions. Such predictions
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can then be used to guide decisions regarding the design and operation of the
real system. At the stage of designing a network, simulation helps us to select a
structure for the network, as well as the geometric parameters of the pipes in
the case of given parameters of gas supply and demand. Simulation also
facilitates the selection of sites where non-pipe elements should be installed.
The control of a gas system also requires simulation in order to obtain
information about the pressures and flow rates at given points of the network.
Depending on the character of gas flow in the system we distinguish steady and
unsteady states. The steady states in gas networks are described by systems of
algebraic — in general non-linear — equations. Steady-state simulation is rela-
tively simple to deal with and is far easier to understand; in some cases,
however, the dynamics of the flow cannot be neglected without committing a
serious error; it is then necessary to use a dynamic model which leads to
simulation which is computationally much more complicated.

The aim of this book is to present in ten chapters the problems involved in
gas network simulation both in steady and unsteady states.

Chapter 1 gives the fundamentals of fluid mechanics and thermodynamics
necessary in order to understand the problems discussed further in the book;
while Chapter 2 deals with such non-pipe elements of gas networks as
compressors, pressure regulators and valves.

Simulation of a network of arbitrary topology requires that a mapping be
found such that with its use calculations could be carried outin a fairly simple
way. Such requirements are fulfilled by the graph theory which allows simple
representation of the network structure in terms of the properties of incidence
of its elements, the uniqueness of this representation being ensured. The
relevant problems are discussed in Chapter 3.

Chapter 4 deals with mathematical models used for the simulation of
networks in the steady state. The fundamental equation describing steady gas
flow is derived based on Bernoulli’s equation, and the equations commonly
used in practice are presented. The loop and node models are formulated with
the help of Kirchhoff’s laws. In mathematical terms the steady-state simulation
problem of gas networks consists of solving a given system of non-linear
equations. The Newton multi-dimensional method is commonly used for this
purpose. It requires the solution of a system of linear algebraic equations in
every iteration, which, in the case of gas networks, has a sparse coefficient
matrix.

The analysis of the Newton method, characteristics of selected methods of
solving systems of linear algebraic equations with sparse matrices are given in
Chapter 5.

Chapter 6 discusses the methods and algorithms for simulating steady-state
gas networks, both simple ones (consisting of adequately connected pipes) and
composite ones including non-pipe elements. Examples of computations
illustrating the operation of the discussed algorithms are included.
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Chapters 7,8 and 9 deal with problems of simulating unsteady-state
networks. In Chapter 7 mathematical models — accurate and simplified -
describing unsteady gas flow in the network are discussed. Since the unsteady
states in a pipe are described by means of partial differential equations, the
necessary information on this subject is also provided.

Chapter 8 gives information on numerical methods of solving partial
differential equations. These methods are put to use in Chapter 9 for solving
concrete equations describing unsteady gas flow in networks. In this chapter
algorithms of network simulation are also discussed and examples of
computation are given to illustrate the operation of the algorithms.

Chapter 10 provides fundamental information on the intéractive computer
program, the Interactive Gas Flow Analysis (IGFA) program, developed at
the UMIST, being used as an example.

In 1979 1 was a UN research fellow at the University of Manchester
Institute of Science and Technology. I studied simulation and control of gas
networks in the Control Systems Centre and the Electrical Engineering and
Electronics Department. This research motivated me to write this book. 1
gratefully acknowledge initial contributions by Dr Steven Aylmer and the
encouragement of Dr Alfred Brameller at UMIST. My appreciation also goes
to colleagues from the Institute of Petroleum and Gas Engineering, Warsaw,
especially to Mr Krzysztof Rudowski. Special thanks are due to Mr Tony
Fincham from the London Research Station, British Gas Corporation, who
has given much advice and many suggestions for improvements. Whether the
final effect of my long-lasting efforts is a success will be for the readers to judge.

AJ. Osiadacz
Manchester
April, 1986



CONTENTS

Preface iX

1 Selected concepts of thermodynamics and fluid mechanics 1

1.1 Fundamentals of the thermodynamics of gases 1
1.2 Fundamentals of gas flow in pipes 8
Bibliography 16
2 Non-pipe elements of gas networks 17
2.1 Introduction 17
2.2 Compressor stations 17
2.3 Pressure regulators 26
2.4 Valves 33
“Bibliography 34
3 Selected elements of graph theory 35
3.1 Imtroduction 35
3.2 Selected terms and definitions of graph theory 35
3.3 Network topology 40
3.4 Computer representation of network graphs 44
3.5 Methods of loop generation 50
Bibliography 67
4 Formulation of equations for steady-state analysis 69
4.1 Introduction 69
4.2 The general flow equation 69
4.3 Flow equations in practice 73
44 Nodal formulation 80
4.5 Loop formulation 81

Bibliography 82



Vi

CONTENTS

5 Numerical solution of algebraic equations

5.1 Introduction

5.2 Stationary iterative methods

5.3 Numerical solution of linear algebraic equations
Bibliography

Methods of steady-state analysis

6.1 Introduction

6.2 Newton-nodal method (multi-dimensional case)

6.3 Newton-nodal method: one-dimensional case (Hardy—Cross
method)

6.4 Newton-loop method (multi-dimensional case)

6.5 Newton-loop method: one-dimensional case (Hardy—Cross
method)

6.6 Newton loop-node method (multi-dimensional case)

6.7 Methods of simulation of networks with non-pipe elements

Bibliography

7 Formulation of equations for transient analysis

7.1 Introduction

7.2 Classification of partial differential equations
7.3 Basic equations for transient flow

7.4 Simplified mathematical models
Bibliography

83

83
83
88
104

105

105
105

117
125

141
148
159
175

177

177
177
180
186
194

8 Computer methods for solving partial differential equations 196

8.1 Introduction

8.2 The finite difference grid

8.3 Finite difference approximations to the derivatives
8.4 Convergence, consistency and stability

8.5 Parabolic equations

8.6 Hyperbolic equations

Bibliography

Methods of transient analysis

9.1 Introduction

9.2 Simulation of unsteady gas flow in a single pipe

9.3 Simulation of unsteady gas flow in a simple transmission
system

9.4 Simulation of unsteady gas flow in complex gas networks

Bibliography

196
196
197
200
202
209
223

224

224
224

239
241
259



CONTENTS

10 Interactive gas flow analysis

10.1 Introduction

10.2 The typical components of an interactive system
10.3 The interactive gas flow analysis program
Bibliography

Index

vii
260

260
261
262
266

267



1 SELECTED CONCEPTS
OF THERMODYNAMICS AND
FLUID MECHANICS

1.1 FUNDAMENTALS OF THE THERMODYNAMICS OF GASES

1.1.1 Terms and definitions

In order to determine the concrete physical conditions under which a gas is
considered and thereby to determine unambiguously the state of the gas,
convenient parameters of the state of gas are introduced. The most convenient,
and therefore the most widely used, parameters characterizing the state are the
temperature, pressure and specific volume (or density) of the gas.

Consider the temperature characterizing the thermal state of the gas: let us
introduce the following notation.

T=27315+1t°C (1.1

The dimension of T is temperature and it should be regarded as the
temperature read off a scale differing from the Celsius (Centigrade) scale in that
its zero lies at a temperature of — 273.15 °C. The temperature read off this scale
is denoted as K (Kelvin).

Pressure p is defined as the normal component of force F per unit area
exerted by a gas on a boundary. The pressure is defined for an area element
sufficiently large to allow the gas to be treated as a continuum. Thus

= lim AF,
P ad-aq AA

[Nm~2) (12)

where: A4’ is the minimum area for which the gas behaves as a continuum. In
general, the continuum behaviour is observed as long as the average distance
that a gas molecule travels between collisions is small compared with the
boundary dimension; in our case, to a side of the area element AA’",

The total pressure exerted on the boundary wail is called the absolute
pressure. The pressure exerted on a wall by the atmosphere is called
atmospheric pressure; this pressure varies with latitude and elevation above the
earth’s surface. Atmospheric pressure is the result of the weight of air at a
particular location.
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plabsoute)

Positive gauge

pressuir € Atmospheric

pressure

[}
Negative gauge
pressure olr vacuum

Zero absolute
pressure

Fig. 1.1 Relationship between pressure terms.

Gauge pressure is the difference between the absolute and atmospheric
pressures in a particular system and is usually measured with an instrument
which treats atmospheric pressure as a reference.

Vacuum represents the amount by which the atmospheric pressure exceeds
the absolute pressure of a system. The various pressures are shown in Fig. 1.1.

By specific volume of a gas we understand the volume occupied by its unit
mass. The specific volume v is related to the mass G of a gas and its volume V as
follows:

V. 4
=—[m3kg~! L
v=;m’kg™] (13)
Density of gas is defined as the inverse of the specific volume, i.e.
G 1 L4
a7 (1.4)

Specific weight denoted by y is the weight of gas per unit volume. In
accordance with Newton’s Second Law, the density and specific weight of a
gas are related by the equation

?=p'g=g/v[Nm™3] (1.5)
where g is the acceleration of gravity (ms~2),
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1.1.2 Gas laws and equations for gases (see Callen, 1960)

(a) Boyle's law

If the temperature of a given quantity of gas is held constant, the volume of gas
varies inversely to the absolute pressure. Thi§ relationship, written as an
equation, is

v
Py =-2, or p,v, = p,,, OF pv = constant (1.6)
P2
A graphic representation of this relationship is given in Fig. 1.2,

(b) Charles’ law
This law consists of two parts:

(i) Ifthe pressure exerted on a particular quantity of gas is held constant, then
with any change of state the volume will vary directly as the absolute
temperature, which can be expressed by the equation:

ow T, T, T, T
—=_— 0r — =—=, or — = constant 1.7
v, T, vy v, v
This is represented graphically in Fig. 1.3.
(i1) If the volume of a particular quantity of gas is held constant, then with any

p b

~e i
A

Fig. 1.2 Pressure-volume relationship according to Boyle’s law, temperature
constant.
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TA

7"

——
v

Fig. 1.3 Temperature—volume relationship according to Charles’ law, pressure
constant.

change of state, the absolute pressure will vary directly as the absolute
temperature:

T T, T T
p_l - -1 or 21 = 2 or —=constant (18)
p T, p b2

Fig. 1.4 shows this relationship graphically.

T

p

Fig. 1.4 Temperature—pressure relationship according to Charles’ law, volume
constant.
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(c) Boyle's and Charles’ Laws

The relations of Boyle’s and Charles’ laws may be combined to yield

Pros P2l P constant (1.9)

The constant in equation (1.9) does not depend on the state of the gas. It only
depends on the properties of the gas and is specific for each gas. It is known as
the gas constant. Denoting the gas constant by R(Jkg ™! K 1), we can write
equation (1.9) in the form

pv=RT (1.10)

In this way we have obtained the equation which uniquely relates the
parameters p,v, and T of a gas, i.e. the equation of state of an ideal or perfect
gas.

An ideal gas is a gas whose molecules are considered to be material points,
the interaction between them being restricted to collisions. The sense of
introducing the concept of the ideal gas is that in practice equation (1.10)
represents more or less approximately the behaviour of many gases under
conditions close to normal atmospheric temperatures and pressures. Various
gas processes can be calculated with sufficient accuracy with the aid of
equation (1.10). Let us list the special processes:

(1} the constant temperature or isothermal process;

(2) the constant pressure or isobaric process;

(3) the constant volume or isometric or isochoric process;
(4) the zero heat transfer or adiabatic process.

A polytropic process is one which may be represented by the relationship
pv" =const=C (1.11)

or, alternatively, in the logarithmic form

lnp=—nlnv+InC (1.12)

where n is called the polytropic exponent. We may compare equations (1.11)
and (1.12) with (1.10) and show that the four special processes mentioned
above can be fitted to the polytropic relation if we use the following values of n:

T = const n=10

p = const n=0

v = const H=+4 00
C

q=0 n:é:—
CV

where: g is the heat transferred, ¢, the heat capacity at constant pressure, c, the
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P

o

Fig. 1.5 Polytropic process according to pv" = const.

heat capacity at constant volume and ¢ is the isentropic exponent.
These processes are plotted in the p-v diagram in Fig. 1.5. Between the two
end states 1 and 2 equation (1.11) can be written as

pivi=py3=C (1.13)

By manipulating this relationship along with the ideal-gas law (equation
(1.10)) we can obtain several alternate expressions for the end states in a
polytropic process:

i/n
2=(”—‘) (1.14)
Uy 22}
TZ (pz)(n—l)/n
—={— (1.15)
T, 141
Tz _ v, n-1
T —(Uz) (1.16)

Note that equations (1.15) and (1.16) hold for ideal gases only.

A real gas differs more from an ideal gas the greater its density. From the
molecular-kinetic point of view the ‘non-ideality’ of a gas is due to the fact that
the molecules have a certain volume and also to the fact that intermolecular
interactions are of an intricate nature.

Since the ideal-gas equation of state is so simple, it is not unnatural to seek a
means of modifying it in order to match it with non-ideal-gas behaviour. The
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technique employed consists in defining a factor Z, called the compressibility
factor, such that

_p

7=
RT

(1.17)
Obviously, Z = 1.0 for an ideal gas, and the various virial coefficients (see
Holman, 1980) simply provide a series of corrections to the ideal-gas
behaviour. It is possible to give some generalized information for Z.

Let us define new variables called the reduced pressure, reduced specific
volume and reduced temperature:

p=L
P
v
v, =—
UC
T
T.=—
r Tc

where p_ is the critical pressure, ie. pressure which a gas will exert when in
equilibrium with the liquid phase and at the critical temperature, T, is the
critical temperature, i.e. temperature above which a gas cannot be liquefied by
the application of pressure alone regardless of the amount of pressure, and D, is
the critical specific volume, i.e. the specific volume of a gas at the critical
temperature and pressure.

10 19
N —1=2.0/ 18—
M\ Sii==2
MANNEZZ
£ 07 \\\\ W4
2 3
HE\S7 4
7] 05
£ s A/
g 04 /
(&)
03

0 10 20 30 40 S0 60 70

Reduced pressure p-

Fig, 1.6 Compressibility relation for methane.
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Algebraic manipulation of the van der Waals equation (see Holman, 1980)

gives
2
3 [ P 2 27p, 7_ 27p; ~0 118
z (8T,+1)Z +(64T,2> 51277 (1.13)

where Z is the compressibility factor defined in equation (1.17). Obviously,
equation (1.18) can be solved for Z explicitly in terms of p, and T, and,
consequently, we postulate the existence of a relationship of the form

Z=f(p,T)) (1.19)

Equation (1.19) is called the law of corresponding states. Ideal-gas behaviour
occurs when:

(i) p, is small compared to 1.0, or
(ii) T, is large compared to 1.0.

Fig. 1.6 shows graphically equation (1.19) for methane.

1.2 FUNDAMENTALS OF GAS FLOW IN PIPES
1.2.1 Viscosity

An important property of the gas is its viscosity (also referred to as dynamic or
absolute viscosity). Viscosity is the gas resistance to flow, which reveals itself as
a shearing stress within a flowing gas and between a flowing gas and its
container. The viscosity is given the symbol g and is defined as the ratio of the
shearing stress 7 to the rate of change in velocity w or, mathematically, dw/dx.
This definition results in the following important equation for gas shear
dw

T=pu o (1.20)
where: x = the distance.

Equation (1.20) is valid for laminar flow, but not for turbulent flow where
much of the apparent shear stress is due to exchange of momentum between
adjacent layers of flow. From equation (1.20) it can be found that the
dimension of viscosity is [Ns m ~ 2], Occasionally the viscosity is given in poise,
one poise equalling 0.1 Nsm~2 Because of its frequent occurrence, the
absolute viscosity divided by the gas density is separately defined and called
the kinematic viscosity v: Thus

v=up/p
The dimension of v is [m?s~!].

The variation of dynamic viscosity of methane with temperature is shown in
Fig. 1.7.



