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Preface

‘This book provides an introduction to abstract algebraic geometry using

the methods of schemes and cohomology. The main objects of study are
algebraic varieties in an af_ﬁne or projective space over an algebraically
closed field; these are introduced in Chapter I, to establish a number of
basic concepts and examples. Then the methods of schemes and
cohomology are developed in Chapters II and III, with emphasis on appli-
cations rather than excessive generality. The last two chapters of the book
(IV and V) use these methods to study topics in the classical theory of
algebraic curves and surfaces.

The prerequisites for this approach to algebraic geometry are results
from commutative algebra, which are stated as needed, and some elemen-
tary topology. No complex analysis or differential geometry is necessary.
There are more than four hundred exercises throughout the book, offering
specific examples as well as more specialized topics not treated in the
main text. Three appendices present brief accounts of some areas of
current. resgarch.

This book can be used as a textbook for an introductory course in
algebraic geometry, following a basic graduate course in algebra. I re-
cently taught this material in.a five-quarter sequence at Berkeley, with
roughly one chapter. per quarter. Or one can use Chapter 1 alone for a
short course. A third possibility worth considering is to study Chapter 1,
and then proceed directly to Chapter IV, picking up only a few definitions
from Chapters Il and I11, and assuming the statement of the Riemann—
Roch theorem for curves. This leads to interesting material quickly, and
may provide better motivation for tackling Chapters II and 111 later.

The material covered in this book should provide adequate preparation
for reading more advanced works such as Grothendieck [EGA]. [SGA]
Hartshorne {5], Mumford [2], [5), or Shafarevich [1].
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Introduction

The author of an introductory book on algebraic geometry has the difficult
task of providing geometrical insight and examples, while at the same
time ‘developing the modern technical language of the subject. For in
algebraic geometry, a great gap appears to separate the intuitive ideas
which form the point of departure from the technical methods used in
current research.

The first question is that of language. Algebraic geometry has
developed in waves, each with its own language and point of view. The
late nineteenth century saw the function-theoretic approach of Riemann,
the more geometric approach of Brill and Noether, and the purely alge-
braic approach of Kronecker, Dedekind, and Weber. The Italian school
followed with Castelnuovo, Enriques, and Severi, culminating in the clas-
sification of algebraic surfaces. Then came the twentieth-century **Ameri-
can’’ school of Chow, Weil, and Zariski, which gave firm algebraic foun-
dations to the Italian intuition. Most recently, Serre and Grothendieck
initiated the French school, which has rewritten the foundations of alge-
braic geometry in terms of schemes and cohomology, and which has an .
impressive record of solving old problems with new techniques. Each of
these schools has introduced new concepts and methods. In writing an
introductory book, is it better to use the older language which is closer to
the geometric intuition, or to start at once with the technical language of
current research? L

The second question is a conceptual one. Modern mathematics tends to
obliterate history: each new school rewrites the foundations of its subject
in its own language, which makes for fine logic but poor pedagogy. Of
what use is it.to know the definition of a scheme if one does not realize
that a ring of integers in an algebraic number field, an algebraic curve, and
a compact Riemann surface are all examples of a ‘‘regular scheme of
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Introduction

dimension one'’? How then can the author of an introductory book indi-
cate the inputs to algebraic geometry coming from number theory, com-
mutative algebra, and complex analysis, and also introduce the reader to
the main objects of study, which are algebraic varieties in affine or pro-
jective space, while at the same time developing the modern language of
schemes and cohomology? What choice of topics will convey the meaning

of algebraic geometry, and still serve as a firm foundation for further study
and research?

My own bias is somewhat on the side of classical geometry. I believe
that the most important problems in algebraic geometry are those arising
from old-fashioned varieties in affine or projective spaces. They provide
the geometric intuition which motivates all further developments. In this
book. I begin with"a chapter on varieties, to establish many examples and
basic ideas in their simplest form, uncluttered with technical details. Only
after that do 1 develop systematically the language of schemes, coherent
. sheaves, and cohomology, in Chapters 1Land II1. These chapters form the

technical heart of the book. In them I attempt to set forth the most
important results, but without striving for the utmost generality. Thus, for
example, the cohomology theory is developed only for quasi-coherent
sheaves on noetherian schemes, since this is simpler and sufficient for
most applications; the theorem of **coherence of direct image sheaves™ is
proved only for projective morphisms, and not for arbitrary proper
morphisms. For the same reasons I do not include the more abstract
notions of representable functors, algebraic spaces, €tale cohomology,
sites, and topoi. . ’

The fourth and fifth chapters treat classical material, namely nonsingu-
lar projective curves and surfaces, but they use techniques of schemes
and cohomology. 1 hope these applications will justify the effort needed to
absorb all the technical apparatus in the two previous chapters.

As the basic language and logical foundation of algebraic geometry, I

. have chosen to use commutative algebra. It has the advantage of being
precise. Also, by working over a base field of arbitrary characteristic,
which is necessary in any case for applications to number theory, one
gains new insight into the classical case of base field C. Some years ago,
when Zariski began to prepare a volume on algebraic geometry, he had to

“develop the necessary algebra as he went. The task grew to such pro-
portions that he produced a book on commutative algebra only. Now we
are fortunate in having a number of excellent books on commutative
algebra: Atiyah-Macdonald (1], Bourbaki {1], Matsumura {2], Nagata {71
and Zariski-Samuel [1]. My policy is to quote purely algebraic results as
needed, with references to the literature for proof. A list of the results
used appears at the end of the book. ‘

Originally 1 had planned a whole series of appendices—short expos-
itory accounts of some current research topics, to form a bridge between ’
the main text of this book and the research literature. Because of limited
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Introduction

time and space only three survive. I can only express my regret at not
including the others, and refer the reader instead to the Arcata volume
(Hartshorne, ed. {1]) for a series of articles by experts in their fields,
intended for the nonspecialist. Also, for the historical development of
algebraic geometry let me refer to Dieudonué [1]. Since there was not
space to explore the relation of algebraic geometry to neighboring fields as
much as I would have liked, let me refer to the survey article of Cassels [1]
for connections with number theory, and to Shafarevich [2, Part I1I] for
connections with complex manifolds and topology.

Because I believe strongly in active learmning, there are a great many
exercises in this book. Some contain important results not treated in the
main text. Others contain ‘specific examples to illustrate general
phenomena. I believe that the study of particular examples is inseparable
from the development of general theories. The serious student should
attempt as many as possible of these exercises, but should not expect to
solve them immediately.- Many will require a real creative effort to under-
stand. An asterisk denotes a more difficult exercise. Two asterisks denote
an unsolved’problem. :

See (I, §8) for a further introduction to algebraic geometry and this

-book.

Terminology

For the most part, the terminology of this book agrees with generally
accepted usage, but there are a few exceptions worth noting. A variety is
-always irreducible and is always over an algebraically closed field. In
Chapter I all varieties are quasi-projective. In (Ch. II, §4) the definition is
expanded to include abstract varieties, which are integral separated
schemes of finite type over an algebraically closed field. The words curve,
surface, and 3-fold are used to mean varieties of dimension 1, 2, and 3
respectively. But in Chapter 1V, the word curve is used only for a nonsin-
gular projective curve; whereas in Chapter V a curve is any effective
divisor on a nonsingular projective surface. A surface in Chapter V is
always a nonsingular projective surface. )

A scheme is what used to be called a prescheme in the first edition of
[EGA], but is called scheme in the new edition of [EGA, Ch. I].

The definitions of a projective morphism and a very ample invertible sheaf
in this book are not equivalent to those in [EGA]—see (11, §4, 5). They are
technically simpler, but have the disadvantage of not being local on the
base.

The word nonsingular applies only to varieties; for more general
schemes, the words regular and smooth are used.

Results from algebra

I assume the reader is familiar with basic results about rings, ideals,
modules, noetherian rings, and integral dependence, and is willing to ac-
cept or look up other results, belonging properly to commutative algebra

XV,



Intreduction

or homological algebra, which will be stated as needed, with references to
the literature. These results will be marked with an A: e.g.. Theorem
3.9A, to distinguish them from results proved in the text.

The basic conventions are these: All rings are commutative with iden-
tity element 1. All homomorphisms of rings take 1 to 1. In an integral
domain or a field, 0 # 1. A prime ideal (respectively, maximal ideal) is an
ideal p in a ring A such that the quotient ring A/p is an integral domain
(respectively, a field). Thus the ring itself is not censidered to be a pnme
ideal or a maximal ideal.

A multiplicative system in aring A is a subset S, containing 1, and closed
under multiplication. The localization S ~'A is defined to be the ring formed
by equivalence classes of fractions als, a EA,s €S, whereals anda'ls’ are
said to be equivalent if there is an s” € S such that s"(s'a —sa’') = 0 (see
e.g. Atiyah-Macdonald [1, Ch. 3]). Two special cases which are used
constantly are the following. If p is @ prime idealin A, thenS =A —p isa
multlphcatwe system, and the corresponding localization is denoted by

. If fis an element of A, thenS = {1} U {/" | n = 1} is a multiplicative
system, and the corresponding localization is denoted by A,. (Note for
example that if f is nilpotent, then A, is the zero ring.) '

References

Bibliographical references are given by author, with a number in square
brackets to indicate which work, e.g. Serre, [3, p. 75]. Cross references to
theorems, propositions, lemmas within the same chapter are given by
number in parentheses, e.g. (3.5). Reference to an exercise is given by
(Ex. 3.5). References to results in another chapter are preceded by the
chapter number, e.g. (I, 3.5), or (II, Ex. 3.5).
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CHAPTER I

Varieties

Our purpose in this chapter is to give an introduction to algebraic geometry
with as little machinery as possible. We work over a fixed algebraically
closed field k. We define the main objects of study, which are algebraic
varieties in affine or projective space. We introduce some of the most
important concepts, such as dimension, regular functions, rational maps,
nonsingular varieties, and the degree of a projective variety. And most im-
portant, we give lots of specnﬁc examples, in the form of exercises at the end
of each section. The examples have been selected to illustrate many inter-
esting and important phenomena, beyond those mentioned i in the text. The
person who studies these examples carefully will not only havea good under-
standing of the basic concepts of algebraic geometry, but he will also have
the background to appreciate some of the more abstract developments of
modern algebraic geometry, and he will have a resource against which to
check his intuition. We will contmually refer back to this library of examples
in the rest of the book.

‘The lastsection of this chapter is a kind of second introduction to the book.
It contains a discussion of the “classification problem,” which has motivated
much of the development of algebraic geometry. It also contains a discussion
of the degree of generality in which one should develop the foundations of
algebraic geometry, and as such provides motivation for the theory of
schemes. ' »

1 Affine Varieties

Let k be a fixed algebraically closed field. We define affine n-space over k,
denoted A or simply A", to be the set of all n-tuples of elements of k. An
element P € A" will be called a point, and if P = (a,, . . . ,a,) With g; € k, then
the a; will be called the coordinates of P,



[ Varicties

Let A = k[x,,...,x,] be the polynomial ring in n variables over k.
We will interpret the elements of A as functions from the affine n-space
to k, by defining f(P) = flay,....q4,), where fe A and Pe A" Thus if
JS € A is a polynomial, we can talk about the set of zeros of f, namely
Z(f) = {Pe A" f(P) = 0}. More generally, if T is any subset of A4, we
define the zero set of T to be the common zeros of all the elements of T,
namely

Z(T) = {Pe A"|f(P) =Oforall fe T}

Clearly if a is the idal of A generated by T, then Z(T) = Z(a). Further-
more, since A is a noetherian ring, any ideal a has a finite set of generators
fi,....f,. Thus Z(T) can be expressed as the common zeros of the finite
set of polynomials fl, N

Definition. A subset Y of A" is an algebraic set if there exists a subset T =
-such that Y = Z(T).

Proposition 1.1. The union of two algebraic sets is an algebraic set. The -
intersection of any family of algebraic sets is an algebraic set. The empty
set and the whole space are algebraic sets.

Prook. If Y, = Z(T,) and Y, = Z(T,), then Y, U Y, = Z(T,T,), where
T, T, denotes the set of all products of an element of T, by an element of
T,. Indeed, if Pe Y, U Y,, then either Pe Y, or Pe Y,, so P is a zero of
every polynomial in T,T,. Conversely, if Pe Z(T,T,), and P ¢ Y, say,
then there is an f € T, such that f(P) # 0. Now for any g€ T,, (fg)(P) = 0
implies that g(P) = 0, so that P€ Y,. | ‘

If Y, = Z(T,) is any family of algebraic sets, then ()Y, = Z({JT,), so -
(Y, is also an algebraic set. Finally, the empty set &= Z(1), and the whole
space A" = Z(0).

Definition. We define the Zariski topology on A" by taking the open subsets
to be the complements of the algebraic sets. This is a topology, because
according to the proposition, the intersection of two open sets is open,

- and the union of any family of open sets is open. F urthermore the empty
set and the whole space are both open.

Example 1.1.1. Let us consider the Zariski topology on the affine line A'.
Every ideal in A = k[ x] is principal, so every algebraic set is the set of zeros
of a single polynomial. Since k is algebraically closed, every nonzero poly-
nomial f(x) can be written f(x) = ¢(x — a,)- -+ (x — a,) with ¢,a,, ... ,a,€
k. Then Z(f) = {a,, ... ,a,}. Thus the algebraic setsin A' are just the finite
subsets (including the empty set) and the whole space (corresponding to
f = 0). Thus the open sets are the empty set and the complements of finite
subsets. Notice in particular that this topology is not Hausdorff.

2



1 Affine Varieties

Definition. A nonempty subset Y of a topological space X is irreducible if
it cannot be expressed as the union Y = Y; u Y, of two proper subsets,
each one of which is closed in Y. The empty set is not considered to be
irreducible.

Example 1.1.2. A! is irreducible, because its only proper closed subsets are
finite, yet it is infinite (because k is algebraically closed, hence infinite).

Exa'mple 1.1.3. Any nonempty open subset of an irreducible space is irre-
ducible and dense. :

Example 1.1.4. If Y is an irreducible subset of X, then its closure ¥ in X is
also irreducible. '

Definition. An affine algebraic. v~riety (or simply affine variety) is an irre-
ducible closed subset of A" (with the induced topology). An open subset
of an affine variety is a quasi-affine variety.

These affine and quasi-affine varieties are our first objects of study. But
before we can go further, in fact before we can even give any interesting
examples, we need to explore the relationship between subsets of A" and
ideals in A more deeply. So for any subset Y = A", let us define the ideal of
Y in' A4 by

I(Y)={feA|f(P) =Oforall Pe Y}.

Now we have a function Z which maps subsets of 4 to algebraic sets, and a
function I which maps subsets of A" to ideals. Their properties are sum-
marized in the following proposition.

Proposition 1.2. '
(@) If Ty < T, are subsets of A,then Z(T,) 2 Z(T,).
(b) If Y, € Y, are subsets of A", then I(Y,) 2 I(};).
(c) For any two subsets Y,, Y, of A", we have I(Y, L Y3) = I(Y,) N I(Y,).
(d) For any ideal a < A, I(Z(a)) = \/5, the radical of a.
(e) Forany subset Y < A", Z(I(Y)) = Y, the closure of Y.

Proor. (a), (b) and {(c) are obvious. (d) is a direct consequence of Hilbert's
Nullstellensatz, stated below, _siﬂce the radical of a is defined as

Ja = {f € A|f" e afor somer > O}.

To prove (e), we note that Y < Z(I(Y)), which is a closed set, so clearly
Y < Z(I(Y)). On the other hand, let W be any closed set containing Y.
Then W = Z(a) for some ideal a. So Z(a) 2 Y. and by (b), [Z(a) = I(Y).
But certainly a < IZ(a), so by (a) we have W = Z(a) 2 ZI(Y). Thus
ZI(Y)= Y



1. Varieties

Theorem 1.3A (Hilbert’s Nullstellensatz). Let k be an a!gebraica?ly closed
field, let a be anideal in A = k[x,, ... ,x,], and let f € A be a polynomial
which vanishes at all points of Z(a). Then f" € a for some integer r > 0.

PrOOF. Lang [2, p. 256] or Atiyah—Macdonald [ 1, p. 85] or Zariski-Samuel
[1. vol. 2, p. 164].

Corollary 1.4. There is a one-to-one inclusion-reversing correspondence
between algebraic sets in A" and radical ideals (i.e., ideals which are equal
to their own radical) in A, given by Y —71(Y) and a v Z(a). -Furthermore,
£n algebraic set is irreducible if and only if its ideal is a prime ideal.

PrOOF. Only the last part is new. If Y is irreducible, we show that I(Y) is
prime. Indeed, if fy e I(Y), then Y < Z(fy) = Z(f) v Z(g9). Thus Y =
(Y n Z(f)) u (Y n Z(g)), both being closed subsets of Y. Since Y is irre-
ducible, we have either Y = Y n Z(f), in which case Y < Z(f),or Y =
Z(y). Hence either f e I(Y)orge I(Y).

Conversely, let p be a prime ideal, and suppose that Z(p) = ¥, U Y.
Then p = I(Y,) N I(Y,), so either p = I(Y;) or p = I(Y,). Thus Z(p) = Y;
or Y,, hence it is irreducible.

Exarhple 1.4.1. A" is irreducible, since it corresponds to the zero ideal in A4,
which is prime.

Example 1.4.2. Let f be an irreducible polynomial in 4 = k[x,y]. Then f
generates a prime ideal in A, since 4 is a unique factorization domain, so
the zero set Y = Z(f) is irreducible. We call it the affine curve defined by
the equation f(x,y) = 0. If / has degree d, we say that Y is a curve of degree d.

Example 1.4.3. More generally, if f is an irreducible polynomial in 4 =
K[~y ... .X,], we obtain an affine variety Y = Z(f), which is called a surface
if n = 3, or a hypersurface if n > 3. '

Example 1.4.4. A maximal ideal m of 4 = k[x,,...,x,] corresponds to
a minimal irreducible closed subset of A", which must be a point, say
P = (a;, ... ,a,). This shows that every maximal ideal of 4 is of the form
m=(x, — dy....X, — a,), for some ay,...,q,€k.

Example 1.4.5. If k is not algebraically closed, these results do not hold. For
example, if k = R, the curve x> +.)* + 1 = 0in A2 has no points. So (1.2d)
is false. See also (Ex. 1.12).

Definition. If Y © A" is an affine algebraic set, we define the affine coordinate
ring A(Y) of Y, to be A/I(Y).

Remark 1.4.6.If Y is an affine variety, then 4(Y) is an integral domain.
Furthermore, A(Y) is a finitely generated k-algebra. Conversely, any
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1 Affine Varieties

finitely generated k-algebra B which is a domain is the affine coordinate
ring of some affine variety. Indeed, write B as the quotient of a polynomial
ring A = k[x,,...,x,] by an ideal a, and let Y = Z(a).

Next we will study the topology of our varieties. To do so we introduce
an important class of topological spaces which includes all varieties.’

Definition. A topological space X is called noetherian if it satisfies the de-
scending chuin condition for closed subsets: for any sequence ¥, 2 Y; 2
of closed subsets, there is an integer rsuch that ¥, = Y, ., = ... .

Example 1.4.7. A”is a noetherian topological space. Indeed,ifY, 2 ¥, 2...
is a descending chain of closed subsets, then I(Y;) < I(Y;) < ... is an as-
cending chain of ideals in A = k[x,, ... ,x,]. Since A4 is a noetherian ring,
this chain of ideals is eventually stationary. But for each i, Y; = Z(I(Y)),
so the chain Y; is also stationary.

Proposition 1.5. In a noetherian topological space X, every nonempty closed
subset Y can be expressed as a finiteunionY = Y, U ... w Y, of irreducible
closed subsets Y,.. If we require that Y, 2 Y; for i # j, then the Y, are
uniquely determined. They are called the irreducible components of Y.

Proor. First we show the existence of such a representation of Y. Let &
be the set of nonempty closed subsets of X which cannot be written as a
finite union of irreducible closed subsets. If & is nonempty, then since X
is noetherian, it must contain a minimal element, say Y. Then Y is not
irreducible, by cohstruction of ©. Thus we can write Y = Y’ U Y”, where
Y' and Y” are proper closed subsets of Y. -By minimality of Y, each of Y’
and Y” can be expressed as a finite union of closed irreducible subsets, hence
Y also, which is a contradiction. We conclude that every closed set Y tan
be writtenasaunion Y = Y; U ... u Y, of irreducible subsets. By throwing
away a few if necessary, w may assume Y; 2 Y, fori #J.

Now suppose ¥ = Y8 ... U Y.is another such representation. Then
YicY=Yu...u¥Y, s0 Yl U(Y; ‘A Y,). But Y; is irreducible, so
Y, < Y forsomei, sayt . Similarly, Y; € Y] forsomej. Then Y; < Y},
s0 j = 1. and we find that Y, = Yl Now let Z =(Y—Y,)". ThenZ =
Y,U...u YandalsoZ = Y; u...u Y, Soproceeding by 1nductlon on
r, we obtam the uniqueness of the

Corollary 1.6. Every algebraic set in A" can be expressed uniquely as a union
of varieties, no one containing another.

Definition. If X is a topological space, we define the dimension of X (denoted
dim X) to be the suprémum of all integers # such that there exists a chain
Zo < Z, < ...c Z, of distinct irreducible closed subsets of X. We
define the dimension of an affine or quasi-affine variety to be its dimen-
sion as a topological space.



