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PREFACE

. : '
The purpose of the present work is to provide a complete and consistent
.mathematical development of what is commonly known as reactor analy-
~sis, that is, the mathematical study of the nuclear behavior of reactors
" ‘based on certain approximate physical models. The subject of reactor
analysis differs somewhat from that of reactor physics in both viewpoint
and content. Whereas reactor analysis deals primarily with the mathe-
~matical tools for treating the physical behavior of reactors, reactor physics
places'much more emphasis on the physical aspects themselves of these
systems. The tone of this book is therefore much closer to that of
advanced treatments in engineering analysis rather than to that of books
on physics. . , ‘ , ‘
The formal level of the presentation is directed primarily toward the
first- and secorid-year graduate student in engineering science although
- it is expected that students in physics will also find it useful. ~ Consider-
able pains have been taken to provide a textbook which could also be used
in a first course on reactor analysis. The introductory sections of each
of the principal chapters have been organized and written with this
thought in mind. In these sections the treatment is initiated with the.
aid of elementary mathematical models and emphasis js placed on a dis-
cussion of the principal physical concepts to be developed. Thé mere
sophisticated mathematical considerations and the development of the
broader theory are left in each case to later sections. Thus it is expected
that this work will serve as an elementary text which can also be used in
an intermediate course by simply inéluding the complete treatment.
. The material presented in this book was developed from a cqurse organ-
ized and presented by the authors over a period of five years at the Oak
Ridge School of Reactor Technology at the Oak Ridge National Labora-
tory. The development of the subject matter in the ORSORT course
constitutes one-third of this book. _

‘It is presumed. that the reader who desires a complete understanding
of the contents of this book has had at least a course in advanced calculus
and preferably a general course also in partial differential equations and
boundary-value problems, or a first course in the methods of mathe-
matical physics. It is also assumed that he is acquainted with the funda-
mental c?,ncepts involved in modern physics and has been introduced to

v



vi ’ PREFACE

the use of analytical methods in the solution of engineering problems.
For those who desire only an introductory knowledge of the subject and
therefore limit their study to the elementary sections, the usual under-
graduate course in differential equations will suffice.

In this treatment the subject matter of reactor analysis has been
developed with the aid of various mathematical models,” The models
selected foy this purpose are those which have proved to be useful in
describing thg various neutron phenomena peculiar to nuclear reactors.
Emphasis is placed upon detailed presentations of each method in brder -
that the reader becomes sufficiently well equipped to treat new and differ- .
ent situations. In nearly every instance the mathematical treatment
has been extended to include the derivation of working formulas, and
. these are usually followed by numerical examples which display the com-
putational techniques which may be used in application. In a few
instances only a formal presentation is supplied, and in these cases the
~ intent is merely to-exhibit the principal physical ideas involved.

‘The authors have attempted to present a discussion of all the principal
topics of reactor analysis, with an entire chapter devoted to each. In
many instances several analytical methods are presented in order to
provide as wide a treatment as possible. These include Chap. 2 on
probability concepts; Chap. 3 on the neutron flux; Chap. 4 on slowing
down; Chap. 5 on diffusion theory; Chap. 6 on the Fermi age model;
Chap. 7 on transport theory; Chap. 8 on reflected reactors; Chap. 9 on
reactor kinetics; and Chap. 10 on heterogeneity. It is important to men-
tion that the remaining chapters represent in main part extensions and -
applications of these general topics.

The material in Chaps. 1, 2, and 3 and in the first section or so of Chaps.
4, 5, 6, 8, 9, and 10 constitu‘es a comprehensive first course in reactor
anal_ysxs. A complete coverage of this text would constitute a second or
intermediate course.

‘The authors wish to express their appreciation for the assistance and
encouragement given by their friends and colleagues. To L. Nelson they
are especially indebted for his penetrating criticism and gentle tolerance.
To R. R. Coveyou, L. Dresner, R. K. Osborn, and H. Schweinler they are
grateful for many suggestions and hours of stimulating discussion; to
R. A. Charpie, W. K. Ergen, E. Guth, G. Leibfried, L. W. Nordheim,
A. Simon, A. M. Weinberg, and T. A. Welton for reviews and comments;
and to H. Honek, D. H. Platus, and D. L. Platus for help with the numeri~ -
cal examples.

Fmally, the authors thank Mrs. Yvonne Lovely for her expert assist~
ance in the preparation of the manuscript.

Robert V. Meghreblian
David K. Holmes
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CHAPTER 1

INTRODUCTION

1.1 Nuclear Chain Reactions

An understanding of the properties and behavior of huclear chain
reactors is achieved through a study of the neutron population which
supports the chain. Information about the neutron population is con-
veniently expressed in terms of the neutron-density-distribution funection:

The detailed features of the chain reaction are determined by the
various nuclear processes which can occur between the free neutrons
and the materials of the reactor system. As in chemical chain reactions,
the rates of the reactions involved in the chain are directly dependent
upon the density of the chair carrier, in the present case the neutrons.
Thus in order to determine the various properties of a reactor, such as
‘the power-production rate and the radiation- -shielding requirements, it is
~ necessary to obtain the fission reaction rate throughout the system and,
therefore, the neutron-density distribution. 1In fact, all the basic nuclear
and engineering features of a reactor may be traced back ultimately to a
knowledge of these distribution functions.

The subject of reactor analysis is the study of the analytical methods
and models used to obtain neutron-density-distribution functions. Since
these functions are intimately related to various neutron-induced nuclear
reactions, a knowledge of at least the basic concepts of nuclear physics
is essential to a thorough understanding of reactor analysis.

The first section of this chapter is a brief discussion of those aspects
of nuclear reactions which are of principal interest to reactor physics.
This presentation assumes that the reader is equipped with an intro-
ductory course in nuclear physics. The second section is an outline
of the basic nuclear components of reactors and of the various types of
reactors, and the last section is a summary of the principal problems of
reactor physies and the analytical methods of attack.® It is intended
that the last section be used primarily for purposes of 1_view and to aid
the reader in orienting the various topics with regard to the over-all
structure and scope of the subject.

.a. Fission Reaction. In introducing the general subject of chain reac-
tions it will be helpful to begin with a review of some elementary but

basie notions about nuclear reactions, in particular the fission reaction.
) 1

&



2 REACTOR ANALYSIS [cHAP. 1

This information is included here primarily as a convenient reference for
explaining the physical- features of neutron phenomena relevant to
reactors.

The bulk of the neutrons participating in the chain reaction within a
reactor possess kinetic energies which range from thermal energy! (hun-
dredths of an electron volt?) up to fission neutron energies (several
million electron volts). Even though this range extends over some eight
orders of magnitude, it is nevertheless possible (and convenient) to
describe nearly all the important neutron-induced reactions within a
reactor by means of a single conceptual model, namely, the compound-
nucleus idea of Bohr.® This model is especially useful in studying the
fission process.

The formation of the compound nucleus constitutes the first step in
the réaction between the neutron and a niicleus. It may be represented
symbolically by

X4 4 nt— [ XA+1}* (1.1)
where X4 denotes some nucleus of mass number A which has captured
(absorbed) a neutron n!. The symbol { }* indicates that the resultant
compound nuclear structure X4+! is in an excited state. The excitation
energy of this nucleus is the combined kinetic and binding energies
of the captured neutron (in the compound nucleus). If the captured
neutron had exactly zero velocity relative to the nucleus, then the exci-
tation energy would be precisely the binding energy E.. This point is
easily demonstrated with the aid of the inverse to the complete reaction
implied in (1.1). The complete reaction is accomplished when the com-
pound nucleus ‘achieves one of several possible stable states by simply
ejecting the excess energy %, in the form of electromagnetic radiation
{gamma rays); thus,

X4 4 pl— [XAH}* 5 X4+ 4 B, (1.2)

Now consider the situation in which the nucieus X4*! in the unexcited
(ground) state acquires an energy E, just large enough to separate a
neutron. The appropriate reaction would be

X4+ 4y { XA} o X4 4 pt (1.3)

This reaction is called the photoelectric liberation of a neutron.
Now, by the #heorem of detailed balance,* this reaction is just the

1 Energy comparable to the thermal motion of the nuclei in the medium supporting
the neutron population,

2 One electron volt (ev) = 1.6023 X 10 2 erg = 1.6023 X 10 !? watt sec.

3 N. Bohr, Nature, 137, 344 (1936); J. M. Blatt and V. F. Weisskopf, * Theoretical
Nuclear Physics,” pp. 340-342, John Wiley & Sons, Inc., New York, 1952,

4 Blatt and Weisskopf, op. cit., pp. 601-602.

¢ 12, Fermi, “Nuclear Physics,”’ rev. ed., pp. 145-146, course notes compiled by Jay
Orear, A. H. Rosenfeld, and R. A. Schluter, University of Chicago Press, Chicago, 1950.
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inverse of (1.2); a comparison of Eqs. (1.2) and (1.3) therefore reveals

that
- Ey = Eb . (l .4)

The binding-energy concept is essemtial to an understanding of the
nuclear-fission process.. A short summary of the idea is therefore in
. order. By definition, The fotal binding energy Ej** of a nucleus is given
by the difference between the mass of the nucleus and the sum of the
masses of its constituent nucleons (protons and neutrons). If M is the
nuclear mass, A the mass number (number of nucleons), N, the number
of neutrons, m, and m, the masses! of the neutron and proton, respec-
tively, and ¢ the velocity/ of light, then

Ept = cmuNo + mp(A = N») — M] = Na(m, — m;) + myd — M]
= c}(Ama — M) (1.5)

where the approximation follows from the fact that m, ~m,. In order

to obtain the average binding energy per nucleon E,, we divide through

by A:

. :
Boom B ot (e - 2 (1.6)

This is the average energy required per nucleon to separate the nucleus

into ite*constituent particles. The value of B, varies from about 1 to

9 Mev over the entire mass scale.? In the mass range of interest to

.~ ‘reactor physics (4 2 70), E, decreases monotonically from 8.6 Mev at,
A =T70t0 7.5 Mev at A = 238. It is this variation which determines
two fundamental features of the fission reaction. It is shown later
that this indicates (1) that there is a positive energy release if a nucleus
‘with 4 > 85 is caused to disintegrate and (2) that nuclei in this range are
theoretically unstable with regard to the fission process.

N Consider first the question of the energy released when a nucleus
disintegrates. As an example, let us take the case of the neutron-
induced fission of the nucleus X4 which results in the formation of two
fragments Y4 and Z4: of masses M, and M 2, respectively. On the basis
of the compound-nucleus concept, this reaction may be written

nl 4 X4 — [ X4+ * 5 YA L 74, (1.7)

In general, the binding energies of the fragments will differ from the
binding energy of the original nucleus; that is, the combined masses
of the fragments will not equal the mass of the fissioned nucleus X4+,
The difference appears as an energy release E; which may be determined

! These are: m, = 1.00893 amu (atomic mass units) and m, = 1,00758 amu, where
lamu = 1.66 X 1072 g,

! Bee, for example, C. F. Bonilla, ‘* Nuclear Engineering,” Fig. 3—5,:). 63, McGraw-
Hill Book Company, Inc., New York, 1957.



4 " REACTOR ANALYSIS [cHAP. 1
from the Einstein mass-energy relation. In the present case
E; =M, — (M, + M) (1.8)

where the subsecript ¢ refers to the compound nucleus. This expression
may be written in terms of the various binding energies if we use the
relation (1.6); thus, in general, for nlicleus ¢

7 (1)

The substitution of this equation into (1.8) yields
By~ (4 + DIEP — Bl + ABP — B (1.10)

where we have used A. = A 4+ 1 = A, + A, .The variation of this
function with mass number has the general shape shown in Fig. 1.1.

wi

>
[
=
o ETN
? 100 - EJ%
[~
w
E;
0 L r I ! [
50 1100 150 200 250
85

Mass number A

Fre. 1.1 Fission energy and electrostatic repulsion energy of a nucleus as a function
of the mass number.

Precisely at what value of A, E; becomes positive depends, of course,
upon the mode of disintegration. In the case of symmetric division
(A, = A,), the critical value of 4 is about 85. For mass numbers sub-
" stantially greater than 85, there are many modes of disintegration which
result in a positive energy release.

The principal observation to be drawn from the fission-energy relation
(1.10) is that, in the case of the heavier nuclei, the fission fragments
represent a lower energy state than the original nucleus. This would
imply that the heavier nuclei are inherently unstable toward fission and
could conceivably undergo spontaneous disintegration. Iixperience
shows, however, that spontaneous fission does not occur at anything
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like the rate one might be led to expect on the basis of the fission ener-
getics alone. The explanation rests with the fact that a nucleus cannot
disintegrate until it has first acquired a certain activation or threshold
energy. Thus there exists an energy barrier between the state of the
whole nucleus and the fragmented state. If one were to take the poten-
tial energy of the fragments at infinite separation to be zero, then the
merged state of the fragments (forming the original nucleus). would
have energy E;. The variation of the potential-energy curve between
these limits would exhibit a maXimum, as shown in Fig. 1.2. If the
maximum value of the potential energy is Eg*x, then Em* — E; = Eqpq
would be the threshold energy for fission. o

A nucleus can acquire the necessary excitation energy to overcome
this barrier by absorbing either a nuclear particle or electromagnetic

-

o} rtry

Fic. 1.2 Potential energy of fission fragments as a function of separation.

radiation. Of the two possibilities, the former leads more easily to
fission since the absorption of a particle makes available not ccly its
kinetic energy but its binding energy as well. This point was previously
noted in connection with the neutron-capture reaction. If the energy
acquired in this way is sufficiently large, the nuclear structure experiences
increasingly violent oscillations which eventually rupture it, forming the
various fragments.

An estimate of the fission threshold can be obtained from the energy
required to distort the nucleus into an extreme shape which results in
complete separation into fragments. It has been shown! 2 that this calcu-
lation can be based on the liguid-drop model of the nucleus. The twe
prineipal contributions to the distortion energy of the nucleus are the
“surface—tensionf’ effect from the nuclear forces between the constituent

IN. Bohr and J. A. Wheeler, Phys. Rev., 66, 426 (1939); J. Frenkel, J. Phys.
(U.S.8.R.), 1, 125 (1939).

?An elementary treatment is given by D. Halliday, “Introductory Nuclear
Physics,” pp. 417-421, John Wiley & Sons, Inc., New York, 1950.
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nucleons and the electrostatic repulsion due to the charge on the protons.
When the nucleus is set into oscillation, any departure from its original
shape results in an increase in its potential energy because of the ‘“surface
tension.”” Such distortions tend, however, to separate the proton popu-
lation and thereby create centers of electrostatic repulsion; these forces
decrease the potential energy of the system and increase the distortions
further. If the distortional oscillations lead to a ‘“‘dumbbell-like”
nuclear configuration, the electrostatic repulsive forces may eventually
overcome the nuclear attractive forces and the nucleus will divide.

When the separation results in two major fragments, the threshold
energy for fission is given by the potential energy of the fragments at the
instant of séparation. If one assumes that separation yields two spher-
ical collections of nucleons with Z; protons and of radius r;, then the
maximum value of the potential energy Er** due to the electrostatic field
is proportional ‘to Z1Z:(ry + r2)~'. When the separation r exceeds
r1 + 3, the coulomb forces predominate, and when r < r; + r;, nuclear
forces predominate. A representative curve of the potential energy
E, of this system is shown in Fig. 1.2,

The variation of the potential energy E=** with mass number has the
general shape shown in Fig. 1.1. It is seen that for all A £ 250 the
threshold energy Em=* — E, > 0; energy must be added in order to
produce fission in all nuclei. The figure reveals, however, that the
threshold energy becomes progressively smaller with increasing mass
number. As the mass number approaches 250, there is a rapid increase
in the probability for spontaneous fission through the mechanism of
barrier penetration.! When A 2 250, the probability is essentially 1,
and the nucleons do not remain together long enough to be described as
a nuclear structure. It is not surprising, therefore, that nuclei with such
large A do not exist in nature.

b. Nuclear Fuels. Nueclei with mass numbers in the range 230 < A4
< 240 have fission thresholds of some several Mev. Thus in these caseg
fission can be brought about by the absorption of radiation or neutrons
of only a few Mev kinetic energy. There are a few nuclei that can even
be caused to fission by thermal (very slow) neutrons. The specific energy
requirements for a particular nucleus depend strongly upon the excita-
tion energy which the captured particle can impart-to it. It wasshown
previously that, in the case of the neutron-induced reaction, the binding
energy of the neutron represented a large part (if not all) of this excitation
energy. However, even though the mass numbers of the more easily
fissionable nuclet differ but little, the binding energies vary by as much as
50 per cent; hence, the variation in the fissionability of the various nuclei.
This relatively large variation is due primarily to the influence of the
even-odd term in the nuclear-mass formula. If M (A4,Z) is the mass of a

1 Blatt and Weissképf, op. cit., p. 567.
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nucleus containing A nucleons of which Z are protons then, in atomic
mass units,!
VA

M(4,2) = 0.993954 — 0.00084Z + 0.01414% + 0.000627 iy

LA/_Q“-___)_ +46 (1.11)

+ 0.083 Y

The term of interest to the present discussion is the quantity 3§, the
so-called even-odd term. It is defined

6=0 when A is odd
= .02‘36 when N, is even, Z is even (1.12)-
0.036

Il

+ yE when N, is odd, Z is odd

These relations indicate the dependence of the mass of a nucleus, and
therefore its binding energy, upon the number and type of nucleons it
contains. An accurate computation of the binding energy of a neutron
E, in a compound nucleus is obtained from the equation

Ey =M +m, — M) (1.13)

which may be compared to the approximation (1.6).

Equations (1.11) through (1.13) reveal that neutron absorptions
which result in compound structures with even numbers of protons and
neutrons acquire the largest excitation energies since the § term is nega-
five for these nuclei. Compound nuclei with an odd number of nucleons
acquire the next largest excitation energies, and odd-odd nuclei, the least.
It is on this basis that the isotopes U233 U2 and Pu?*® can be made to
fission by neutron captures of any energy, whereas Th?32 and U238 will
fission only with véry fast neutrons. In the case of the first three nuclei,
a neutron capture leads to an even-even compound structure, and the
excitation energy due to the neutron binding energy alone (~6.8 Mev)
is equal to the fission threshold. Thus these nuclei can fission by thermal
(very slow) neutron capture, as well as by captures of fast neutrons.
It is this characteristic which makes these nuclei especially important as
nuclear fuels. As will be discussed later, these nuclei fission with such
relative ease in the thermal-energy range that it is ‘well worth while to
provide means to moderate (slow down) fission neutrons to thermal
energies so that this characteristic may be fully exploited. In fact, the
problem of neutron moderation is a principal consideration in reactor
analysis.

In the case of Th?3? and U2, the compound nuc]eus has an even-odd
collection of nucleons and the bmdmg energy for this state (~5.3 Mev)

{ Bonilla, op. cit., pp. 69-72.
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is less than thé threshold energy (~7.1 Mev). Evidently, neutron-

~induced fission is not possible with these nuclei when the neutron kinetic
energy 1s less than 1.8 Mev. This limited fissionability makes these
isotopes much less attractive as the primary fuel component for a steady
chain reaction, although their presence in a chain supported by any of the
“thermal fuels” can lead to significant augmentation.

The energy released from the fission reaction of any of the isotopes
mentioned above may be computed from the equadion for E, (1.8). This
expression, which applies for the two-fragment divisions, will suffice for
most situations of interest since a three-fragment (or more complex)
division of the compound nucleus has a very low Rrobability. A rough
estimate of the fission energies generally available from such nuclei
may be obtained from a sample computation for U?*. The resulting
value will be representative since the various mass numbers differ but
little, and the principal dependence on binding energy occurs in the
E® — E@ term [cf. Eq. (1.10)]. Consider, therefore, the reaction

nl 4 U6 — {U26}* — K% + Bal®? (1.14)

The average binding energy per nucleon E, for a nucleus of mass num-
ber 236 is about 7.5 Mev, and for nuclei of mass numbers 94 and 142,
8.6 and 8.3 Mev, respectively. The approximate relation (1.10) yields
for Efl

E, = (236)(8.6 — 7.5) + (142)(8.3 — 8.6) = 217 Mev

Thus, roughly 200 Meyv is released in a typical fission reaction involving
a heavy nucleus. ‘

The energy from fission appears principally as the kinetic cnergy of
the fission fragments. As these fragments speed outward from the point
of reaction, they encounter the various nuclei of the surrounding
environment. Such encounters are relatively frequent since the frag-
ments are usually highly ionized and therefore experience strong coulomb
interactions with the electron clouds of these nuclei. These interactions
are primarily scattering collisions, and each collision results in the trans-
fer of some of the kinetic energy of the fragment to the struck nucleus.
A series of such collisions eventually slow the fragments to thermal
equilibrium with the environment. Approximately 83 per cent of the
“fission energy is liberated in this way and must be removed by a suitable
cooling system. The remaining 15 per cent appears either as radiation
or as the kinetic energy of neutrinos! and neutrons evaporated from
the fragments or released at the instant of fission. A detailed break-
down of the energy distribution for 172% is given in Table [.1.

The reaction of Eq. (1.14) gives one mode of division of the U?2%
nucleus as a consequence of fission. Of course, this is not the only one

! Halliday, op. ¢i%., p. 94.
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possible and, in fact, any division consistent with the conservation of
mass and energy can occur. The fragments which appear cover the
entire mass scale; however, certain divisions are favored, depending on
the target nucleus and the energy of the captured neutron. The mass
distribution of the various fragments resulting from the fission of U235,
Uz, and Pu?® is shown in Fig. 1.3. For a given nucleus, the shape
of the yield curve is highly sensitive to the energy of the incident neutron.
The figure shows clearly the characteristic grouping of the fission frag-
ments into two distinet regions of the mass scale for the case of a thermal
neutron-induced fission. It is seen that such reactions most frequently
produce two fragments, one of mass number around 95 and the other
of mass number 140. Although other subdivisions can occur, their
likelihood is very improbable.  Of these alternative schemes, the division
of the compound nucleus into two fragments of equal mass occurs in
about 0.01 per cent of the time. '

TasLE 1.1 DistriBUTION OF Fission ENERGY For U

Form Energy, Mev
Kinetic energy of fission fragments..... ... .. 165 + 15
Prompv gammarays............. ... .... .. 5
Kinetic energy of fission neutrons........... 5
Fission product decay:
Gamma........ R, 6
Beta.......,....... ... .. .. .. ... . .. ... 5
Neutrinos............ T 11
Total energy per fission.. . .. ...... .. 197 + 15

The fragments formed in fission are generally very rich in neutrons.
This is a consequence of the fact that among the stable nuclei! the ratio
N./Z increases with Z. Thus the fissionable nuclei with Z ~ 90 will
possess far more neutrons than are required in the nuclear structures
of the stable fragments.? Nearly all these excess neutrons® are released
at the instant of fission. These are the prompt neutrons. The remain-
ing small fraction of neutrons to be released are evaporated off from the
fragments at various time intervals after fission ; these constitute the
delayed neutron groups. In the event that the emission of a neutron
or two by a primary fragment does not leave the nucleus in a stable
configuration, further nuclear readjustment may then occur through the
emission of 8 radiation (electrons).

For the purpose of studying the neutron economy in a reactor, it
will be convenient to rewrite Eq. (1.7) so as to include the neutrons which
are emitted by the primary fragments. For the present, we can omit

! Bonilla, op. eit,, Fig. 3-6, p. 68.
* Halliday, op. cit., pp. 408-412. ®
* 99.245 per cent in the case of U,

~



