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Preface

Useful techniques for the design of multivariable feedback systems have been
known for at least fifteen years, yet these techniques have remained known
to only a relatively small part of the community of control engineers.
This book has been written in order to spread familiarity with the techaiques
more widely.

My objective has been to enable feedback enginecs to design real
systems, and the choice of matérial has been constantly, and 1 hope con-
sistently, guided by that objective. The reader wili thcicfore find ihat a

complete theoretical understanding of the techniques di~ussed will some-’

times require the consultation of other text-books oi research journals; but I

beliéve that I have given enough detail of techniques and algorithms to alow"

complete analyses and designs to be executed. However, this is a genuine téxt-

book and not just a cook-book, so most of the theory required to undarstand’

each technique has been included. There is also enough theoreticai devel-
opment to allow the reader to go on to read the research literature relztively
casily. ‘

The basic view espoused is that sensible design of feedback systems is
possibie only if a frequency-domain point of view is adopted. Between about
1965 and 1980, the advantages of frequency-domain approaches were
championed by Professors Rosenbrock and MacFarlane in the UK,
and by Professor Horowitz in Israel, at a time when most of the academic
community - particularly in the USA —regarded the frequency ‘domain as
obsolete and inherently unsuitable for the solution of multivariable proviems.
The instinct of those who kept faith with the frequency domain has been
spectacularly vindicated during the past ten years. Not only have the zath‘er
ad hoc techniques of the ‘British school’ proved to be useful in practical design
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(Chapter 4), but also the central bastion of time-domain approaches, namely
‘LQG’ optimal control theory, has been turned into an easily usable tech-
nique which yields sensible designs, by giving it a frequency-domain interpre-
tation (Chapter 5). And the very latest technique, H , optimal control theory,
has arisen entirely as a result of frequency-domain thinking (Chapter 6).

. Despite this shift towards the frequency domain, most of the ‘time-
domain’ content of linear systems theory —state feedback, observers, minimal
realizations, LQG controllers and so on - remains essential for multivariable
design. Although it is necessary to think and analyse in frequency-domain
terms, most computational algorithms, and many proofs of theorgms,
are based on state-space methods (Chapters 6 and 8).

I have omitted some material, such as multivariable root-loci and
pole-placement methods, because it does not fit easily into my view of multi-
variable feedback design, apparently being more concerned with the shaping
of transient responses than with obtaining the potential benefits of feedback.
On the whole I have made such omissions without misgivings, but there are
two topics which do not appear in the book and which I feel a little
apprehensive about leaving out. One is the ‘graph topology’ introduced by
Vidyasagar, which may well turn out to play a fundamental role in feedback
theory; the other is the idea of ‘internal-model control’ introduced by Morari,
which has had some impact on the process-control industries, and which is
closely related to the Youla parametrization introduced in Chapter 6. But
anyone wishing to learn about these topics should have no difficulty in
reading the relevant literature, after reading this book, and internal-model
control appears in one of the exercises.

I have also omitted material on discrete-time systems, because of lack
of space. Almost everything in Chapters 1-4 and 7, and much of Chapter 8,
holds for discrete-time systems defined by z-transform transfer functions or
by state-space models, with some obvious modifications. The material on
LQG design, in Chapter 5, can be given a nearly parallel development for
discrete-time systems, but the details are considerably different. In principle,
all the material on H, design in Chapter 6 is applicable to discrete-time
systems, since the bilinear transformation z=1+s/1—s can be used to
transform discrete-time problems into continuous-time ones. But an explicit -
_ development of H,, theory for discrete-time systems is not yet available.

Some feedback and control specialists hold the view that the teaching
of feedback design should be radically revised in the light of recent advances
in feedback theory. They would begin, for example, with the Youla para-
' metrization of all stabilizing feedback controllers, which is indeed a logical
starting point if the subject is viewed as a branch of mathematics. In contrast
- with this view, I have adopted a more conservative sequence of presentation,
~and have begun with a review of the ‘classical’ techniques developed for the

analysis and design of single-input, singie-output feedback foops. There is a
pedagogical advantage in this since the field of multivariable feedback
systems can be entered painlessly by extending the ‘classical’ ideas. But there
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is a deeper reason for adopting this approach: the ‘classical’ treatment_gives
appropriate emphasis to questions which are of real significance to engineer-
ing design, but which may not appear important in a purely mathematical

" account of the subject. For example, there are several results in lineat system

theory which rely on the non-existeace of plant zeros in the rignt nalf-plang
(of the complex plane). An acquaintance with the classical theory makes one .
suspect immediately that the location and not the existence of such zeros
should be significant, particularly as the non-existence of such zeros cannot
be confirmed by any experimental means. :

In order to facilitate comparisons between alternative design methods,
each major technique presented in this book is illustrated by being applied to
the same system - a linearized model of an aircraft, defined in the Appendix —
and the design specification is similar in each case.

Readership

This book is aimed at graduate students who have taken at least one el-
ementary course on feedback and control systems, and who have some
acquaintance with linear systems theory. It is possible, although difficult, to
take a course in linear systems theory at the same time as a course based on
this book. A more detailed discussion of prerequisites is given in Chapter 1.
The book should also be accessible to practising feedback engineers who are
familiar with classical servo design and have had some exposure to ‘modern’
(that is, post-1960) control theory.

Most of the material has been classroom-tested in a number of
graduate courses given at Imperial Coliege, Cambridge University and,
especially, the University of California at Santa Barbara, where in 1986 gave
a 40-hour course covering much of Chapters 1 to S and 7. There are a number
of difficulties associated with teaching this material. The first is that it is
essential for both instructor and students to have access to suitable software
which can be run interactively. All the examples and exercises in the book
have been solved using PC-Matlab {or Pro-Matlab), together with its associ-
ated Control System Toolbox and Multivariable F requency Domain Toolbox
(and, if I were solving them again, I would use the Robust Control Toolbax for
Chapters 5 and 6). The second difficulty to be aware of is that the design
exercises, such as Exercises 4.1 and 4.2, take much longer to solve than
traditional homework exercises, particularly when students are familiarizing
themselves with new software or if there is a shortage of computer resources.
A student cannot be expected to solve more than one, or perhaps at most two,
such exercises per week (assuming that the course is given at a rate of 4 hours
per week, say, and that the students are taking a typical mix of courses). It is
also beneficial for students to solve these exercises working in pairs. The
temptation to set lots of traditional paper-and-pencil problems, and avoid the
design exercises, should be resisted, however. The third difficulty is that of
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examining the students on the material. It seems entirely unsatisfactory to
emphasize design during the course, and set computer-based deSign exercises
for homework, but then examine the students on points of theory and grossly
simplified examples in order to comply with the requirements of the tra-
ditional three-hour examination paper. The solution I have successfully
adopted, both at Cambridge and at Santa Barbara, is to set the class a
realistic design exerrise (possibly varying the details slightly for each student)
and ask them to hand in solutions by some fixed time (typically 48 hours
later).
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A note on language . !
For reasons of simplicity, the pronoun he’ is used to relate to both male and female throughout
. the book.
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‘Symbols and
abbreviations

abs{X)

argz

argmax(.)

BD,

mel

CLHP, CRHP
cond (G)
cond*(G)

dB

deg

det

diag!x,}

Matrix with (i, j) element | x|

Argument of the complex number z.

That value of z which maximizes (.).

The set of block-diagonal perturbations

diag{A,, ..., A, ..., A}, with [ A, < 4.

The set of complex matrices with m rows and ! columns.
Closed left haif-plane, closed right half-plane.

Condition number, 6(G)/a(G).

min cond (SGT), where S and T are diagonai matrices.
s, T

Decibels: x dB represents a gain of 10¥/7°,
Degree (of polynomial).
Determinant (of matrix).

Diagonal matrix with elements x,,x,..... If the matrix is
not square, then x,,x,,...are the elements on the principal
diagonal, and all other elements are zero. The x, may themselves
be matrices. o

Dimenston of square matrix A. e
Direct Nyquist Array.

£xpected (mean) value of stochastic process {x!. i #
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€;

G(A, B. C, D)

" G(s)

- G*(s)
ged {-}
H
1
1,
Im{x}
INA

i

LHS, RHS

PO

In

log or log,,

LQG

LTR

MFD
'MIMO -

ms(G)

norm(X)

OLHP, ORHP
QFT

Rmx1

Re{x}

RFN

SISO

tr(X)

I'(s)

A(X)

The ith standard basis vector [0...0 1 0...0]%, with 1
occurring in the ith position.

Denotes that (A4, B, C, D) is a state-space realization of the transfer
function (matrix) G.

A transfer function (matrix), frequently abbreviated to G.
Denotes GT(—s). (But G¥(s) denotes G'(5).)
Greatest coml;aon divisor of the set {-}.
Set of asymptotically stable transfer functions G, with |G|, < co.
Unit matrix of unspecified dimension.
Unit matrix of dimension n.
Imaginary part of x.
Inverse Nyquist Array.
/ —1; sometimes an index, as in x; "
Left-hand side, right-hand side (of equation or ineq(uality).
Natural logarithm.
ngarithm to base 10.
Linear Quadratic Gaussian.
Loop Transfer Recovery
Matrix-fraction description.
Multi-input, multi-output.
Measure of skewness of G.

#(Xyy) ... 8(X,,) , X ... Xy,

: if X= : :

G(Xpy) ... (X ) Xt oo X
Open left half-plane, open right half-plane.
Quantitative F eedback Theory.
The set of real matrices with m rows and [ columns.
Real part of x. .
Reversed-Frame Normalization.
Single-input, single-output.
Trace (spur) of matrix X, I;x;
Relative gain array, with elcmen-ts ¥: ,(s) o

The ith enanvalue of X

Amax(X ), A (X} Largest and smallest eigenvalues of X.



Ap(X)
uG)
g(X)
oi(X)
gl(G), o(w)

Pex(T)
D, (w)

m, !

=

XT
Xt
{x()}
(X1,
x|
XUy
X |lg
I X lls
(P

1Gl,

IGlly
116Gl

1G 1,

> ¢ ®

n

SYMBOLS AND ABBREVIATIONS  Xvii
Perron-Frobenius eigenvaiue of X.
Structured singular value of transfer function {matrix) G.
Spectral radius of X, max;|4,{X}].
The ith singular value of X.

Principal gain (singular value) of G(jw), the notation depending on
whether dependence on the system G, or on the frequency w, is
being emphasized.

Largest and smallest singular values.

Autocovariance function: E{x(t)x’(t +1)}.

Power spectral density of {x}, Fourier transform of ¢, (). ’
Zero matrix with m rows and ! columns.

Complex conjugate of x.

Transpose of complex conjugate of matrix ¥, X7
Transpose of matrix X.

Pseudo-inverse of matrix X.

A stochastic process.

The (i, j) element of X, also denoted by x, "

Euclidean norm of vector, {x"x}'2,

1-norm, max; X, | x;;]|.
Frobenius norm, {Z; ; xiix;}'% = {tr(XBX)}1/2,

Spectral or Hilbert norm of matrix, 5(X).

{2 oxT(t)x(t)de} V2, if x(¢) is a (real, vector-valued) signal.

{(1/2n)f , tr[ G(jo)GT( —jw)]dw}'™2, if G is a transfer function
(matrix).;

Hankel norm, if G is a transfer function (matrix),

sup6(G(jw)), if G is a transfer function (matrix).

w

sup u(G(jw)), if G is a transfer function (matrix).

‘Is an element of”.

Element-by-element multiplication (Schur or Hadamard product).
Kronecker or tensor product of matrices.

Union (of sets).

Intersection (of sets).

‘Is a subset of .
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CHAPTER 1.
Single-loop Feedback
Design

1.1 Overview and prerequisites 1.5 The ‘shape’ of the solution
1.2 Review of elementary feed- 1.6 Two approaches to design

back design 1.7 Limitations on performance
‘1.3 A standard problem Summary
14 Fundamental relations Exercises
References

1.1 Overview and prerequisites

In this book it is assumed that the reader has taken a typical first course in the
design of feedback systems. Such a course usually covers the Nyquist stability
criterion, the use of Bode and root-locus plots, and the use of simple
compensators to achieve reasonable stability margins, steady-state per-
formance and transient response; we shall review the content of such a course
very briefly (Section 1.2). We shall go on to discuss single-loop feedback
design in more depth than is usual in first courses, and in the process of doing
so we shall establish some nomenclature and relationships which will con-
tinue to hold when we come to examine multivariable problems in later
. chapters. P

Chapters 2 and 3 extend the concepts and results of Chapter 1 to
multivariable systems. Chapter 2 is concerned with establishing stability
criteria which generalize the classical Nyquist criterion. In order to do this it
is necessary to define poles and zeros of multivariable systems, and to tangle
with some linear systems theory; most of the results obtained also find

1
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application in later chapters. Chapter 3 deals with the analysis“of per-
formance and stability margins of multivariable systems. In addition to
straightforward extensions of the results of Chapter 1, Chapter 3 presents a -
considerable amount of recent material on analysing the robustness of
feedback systems in the face of specific disturbances or pararfxgter variations
which goes beyond the classical notions of gain and phase mdrgins.

Chapters 4 to'7 are concerned with design techniques for multi- ‘
variable feedback systems. Chapter 4 deals mostly with direct extensions of
classical ‘methods to multivariable systems. These methods have become
known as the ‘British school’ of multivariable -design, and provide the
simplest and most easily comprehensible design techniques. Chapter 5
describes the use of ‘linear quadratic Gaussian’ control theory in such a
way that sensible feedback designs are obtained. This involves analysing
the resulting designs in the frequency-domain terms developed in Chapters 2
and 3. Chapter 6 moves to the very new area of H, optimal control. This
approach is of great current interest, and has provided some new fundamen-
tal results about feedback systems, as well as a very powerful design techni-
que. Chapter 7 describes some methods of design by parameter optimization;
these are relatively ‘brute-force’ approaches, but sometimes they have to be
resorted to when other techniques either fail or are inapplicable, and they can
produce excellent designs. '

Finally, Chapter 8 discusses the software which is needed to do any
analysis or design in the realm of multivariable systems.

The logical interdependence of the chapters can be represented as in
the diagram below. Thus the reader interested mainly in practical design
techniques may concentrate initially on Chapters 1, 2, 3, 4 and 7, while a
research student may prefer Chapters 1, 2, 3 and 6. All readers are urged to
look at Chapter 8, even if they skip most of the details of Sections 8.2 and 8.3,

Start -

Since the basic representation of a multivariable. system which we use
is the transfer-function matrix - that is, a matrix whose elements are transfer
functions ~some familiarity with linear algebra is essential to the reader
wishing to progress beyond Chapter 1. At the very least, he should be familiar



