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Preface

Recent years have witnessed a substantial growth of interest in ‘Parallel
distributed processing’, ‘connectionist’, or ‘neural network’ models of
cognitive function. Such models have been in existence for many years, but the
publication of Hinton and Anderson’s (1981) book Parallel models of
associative memory (Lawrence Erlbaum Associates), followed, in 1986, by the
two-volume book by Rumelhart, McClelland, and their colleagues entitled
Parallel distributed processing: explorations in the microstructure of cognition
(Bradford Books, MIT Press) did much to attract the attention of
experimental psychologists. Beginning in 1987, PDP ‘workshops’ sprang up in
several British and North American Universities, with the participants
working their way through the chapters in these books and discussing their
implications.

Throughout the 1970s and 1980s, many neurobiologists also developed an
interest in trying to understand how complex networks of real neurons
perform various tasks. The early papers of David Marr, discussing the
cerebellum, archicortex and neocortex, are perhaps the best-known examples
of this approach (e.g. ‘Simple memory: a theory for archicortex’, Philosophical
Transactions of the Royal Society, 1971, 262, 23-81). However, in his 1982
book Vision, Marr expressed some intellectual disappointment with this early
work, worrying that these models failed to grasp the complexities of the
algorithms being computed by complex networks. In its place, he outlined an
approach which, while emphasizing the importance of different levels of
explanation for the neurosciences, also stressed the need for these different
levels to be bridged. Sadly, David Marr did not live to see the promise of his
new approach fulfilled. Many neurobiologists now hope that current
developments in the formal analysis of neural networks will provide just such a
bridge between psychological accounts of cognitive function and accounts
couched at the level of real neurons. In addition, new tract-tracing,
immunocytochemical and recording techniques make it possible to describe
the detailed course and topography of neural interconnections within discrete
networks, the neurotransmitters used, and the capacities of specific pathways
for synaptic plasticity in sufficient detail to make modelling worthwhile.

The central aim of the present volume is to ask the question: ‘What are the
implications of these new parallel distributed processing (PDP) models? Or,
to put it another way, should those experimental psychologists and
neurobiologists interested in cognitive function set about their experiments
differently in the light of these developments? Clearly, this is an issue on which
there is a tremendous difference of opinion. Some see the PDP approach as
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representing a great step forward in the effort to build neurally realistic models
of sufficient sophistication to capture the detailed microstructure of cognition.
Others worry that the explanations offered are deceptive. In particular, some
neurobiologists worry that just because neurons are arranged in large parallel
networks is no reason in itself to suppose that they are carrying out their
processing using algorithms like back-propagation which are presently the
focus of so much attention as models of cognitive function.

This book has emerged out of a one-day conference organized by the
Experimental Psychology Society and held at the University of Oxford on 1
July 1987. That meeting was organized into a morning session devoted to
work on human perception, memory, and language function, and an
afternoon session devoted to psychological and neurobiological work on
animals. The organization of the book is slightly different, partly to emphasize
the different levels of explanation characterized by the psychological and
neurobiological approach. There are three sections. Part I is concerned with
formal models. It introduces the approach and discusses the all-important
assumptions and algorithms of PDP models. Part II is concerned with
implications for psychology and covers both human and animal research. This
section describes the attempts of three different groups of experimenters to
consider the relevance of PDP-type models, but also includes one chapter
critical of the approach. Part III is concerned with implications for
neurobiology. Here also, three authors are impressed by the force of the neural
network approach, one is more cautious. Each of the sections of the book is
introduced by a short chapter sketching out some of the issues discussed and
alluded to in the main chapters that follow. Some readers may find it helpful to
read these three chapters first to get an idea of the scope of the book.

Organizing the meeting in Oxford and putting this book together has been
both a privilege and a pleasure, but are two tasks which would not have been
possible without the help of others. I am particularly grateful to Drs Brian
Rogers and Peter McLeod, both of the Department of Experimental
Psychology in Oxford, who made all the necessary preparations, including a
television relay into an adjoining lecture theatre—such was the interest in the
meeting. I am also grateful to Professor L. Weiskrantz for his permission to
use the facilities of his Department. Professor N. S. Sutherland and Dr David
Willshaw acted as Chairmen for the morning and afternoon sessions and kept
things running smoothly and to time. The contributors to the book tolerated
and, in all cases, accepted my requests for minor changes in their manuscripts
for the sake of continuity and consistency in the book. They also kindly agreed
to offer their support to a fund recently set up by the Experimental Psychology
Society to support research by postgraduate students. Two of the chapters
have been published previously. Geoffrey Hinton’s chapter has previously
appeared in a volume published by Lawrence Erlbaum; while Steven Pinker’s
chapter, originally written for the present book, has also appeared in Trends in
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Neuroscience. I am grateful to Erlbaum Associates and Elsevier for allowing
the present reprinting. Finally, I am grateful to Leslie Chapman for her
assistance with the Index and to the staff of the Oxford University Press who
have supported the project from the outset and who have so ably seen it
through to completion.

University of Edinburgh R.G.M.M.
October 1988
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1

Network models of the mind
H. CHRISTOPHER LONGUET-HIGGINS

The association of ideas

The fact that people can associate ideas, such as names and faces, or sounds
and symbols, is too obvious to need documentation. If there were a limited
number of possible ideas, the developing brain could allocate a separate
neurone to each, and connect every pair of such neurones by a modifiable
synapses, to be facilitated if and only if the two ideas occurred in association.
Ideas can, however, be very complicated, so the number of possible ideas is
enormous—far too large for each to be assigned a neurone on the off-chance of
it turning up. Complex ideas, ‘patterns’, must therefore be indexed by the
association of simpler ones, ‘features’, to which neurones can be allocated
without extravagance. By recording the pairwise associations between the
features of a pattern we can set up a simple associative memory (Marr 1969),
from which the pattern can be recovered by activating enough of its features
and allowing these to activate the remainder. Memories of this kind not only
solve the problems of ‘store allocation’ and ‘content-addressability’, but are
also relatively robust against partial corruption of the contents.

Becoming more ambitious, we may attempt to use an associative net for
storing not just one but several patterns (Willshaw, Buneman, and Longuet-
Higgins 1969). If two such patterns share any features, there is a possibility of
‘cross-talk’ between them when either pattern is retrieved. This can be
regarded either as a nuisance or as a bonus, according to intellectual taste: the
convergent thinker will see it as a limitation on the accuracy of recall, the
divergent as a source of creative generalization. But in its powers of
generalization the associative net is subject to the same sort of limitations as
the one-layer perceptron (Rosenblatt 1962), since it is essentially a battery of
such perceptrons working in parallel on the same set of input elements. Not
that this is a crippling disability; associative nets can learn to reason
inductively (Willshaw 1972) and to supply the best completion of any pattern
picked from an ensemble in which the accessible elements of a pattern supply
independent clues about the inaccessible elements (Minsky and Papert 1969;
Hinton and Sejnowski 1983). But a number of vital cognitive skills such as
concept formation and language acquisition are known to lie beyond the
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competence of the associative net (Hinton and Anderson 1981), so the
question arises whether all parallel distributed processing (PDP) networks of
this general type are subject to similar limitations.

Two different questions

There are two questions to be asked about a PDP network or, indeed, any
model of mental or cerebral activity:

1. What tasks can such a network be designed to perform?
2. Which of these tasks can the network learn to perform?

The questions must be distinguished, since most machines, however well they
perform their intended functions, cannot learn anything at all. For the
perceptron (i.e. the one-layer perceptron, unless otherwise stated) and the
associative net, ancestors of the PDP network, the answers to both questions
are known.

The perceptron is, in essence, a device for dividing bit-patterns into two
classes. Each element of the pattern is registered by a separate unit, and these
units are directly connected by lines of modifiable ‘weight’ to an output unit
with an adjustable threshold. Whether or not the output unit fires depends on
whether the sum of the weights on the lines from the ‘active’ units—those
which register a 1 rather than a 0—does or does not exceed the output
threshold. If and only if there exists some plane, in the space of possible
patterns, that separates the patterns of one class from those of the other, then a
suitable choice of weights and output threshold will ensure that the perceptron
correctly distinguishes between patterns of the two kinds. Thus one can make
a perceptron that distinguishes the 2-bit pattern (0,0) from any other 2-bit
pattern, but no choice of weights and threshold will enable the patterns (0,1)
and (1,0) to be distinguished from either of the other two, because there is no
straight line in 2D separating the points (0,1) and (1,0) from the points (0,0)
and (1,1). It is in this sense that the perceptron cannot solve the ‘exclusive or’
problem—that of telling when just one of the two input elements, but not both,
has the value 1.

Remarkably enough, if a given task can be performed by a suitably prepared
perceptron, then an unprepared perceptron of similar architecture canlearn to
perform the task. This result follows directly from the perceptron convergence
theorem (Minsky and Papert 1969). It also holds for the associative net
because, as already remarked, such a net is nothing more than a battery of
perceptrons working in parallel, with every output unit directly connected to
every input unit. It must be emphasized, however, that the restriction to
‘linear’ tasks, coupled with the proven ability to learn any such task, applies
only to the one-layer perceptron and to its offspring the associative net.
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For PDP networks with hidden units the two questions posed above remain
largely unanswered, but one useful result is available, namely that a two-layer
perceptron—one with a single layer of hidden units between the input layer
and the output unit—can, if suitably prepared, compute any Boolean function
of the input vector. Thus the ‘exclusive or’ predicate, the Waterloo of the one-
layer perceptron, can easily be evaluated by a two-layer perceptron if the
number of units and the weights of the various connections are suitably chosen
(Rumelhart and McClelland 1986). The generalization of this result to PDP
networks is the proposition that any mapping whatever between Boolean
input vectors and output vectors can be achieved by a network with a single
layer of hidden units. Unfortunately, neither result is of much practical
importance, because, for an arbitrary Boolean function and a sizeable number
of input units, the number of hidden units required would be quite absurdly
large.

As yet, no result equivalent to the perceptron convergence theorem has been
established for the multilayer perceptron, but the recently invented ‘back-
propagation’ procedure of Rumelhart, Hinton, and Williams (1986) is a
natural generalization of the perceptron learning algorithm. It has been
applied with impressive results to a number of learning tasks, and in the other
two chapters of this section two more such tasks crumble beneath the same
steam roller.

Glimmerings of intelligence

In the good old days of the von Neumann computer (the one on your desk) one
could either theorize about the correctness of programs or actually write
programs to impress the onlooker with the wonders of artificial intelligence.
What should have been the program to end all such programs was the general
problem solver, GPS for short, of Newell, Shaw, and Simon. It used to remind
one of the patent beetle killer consisting of two wooden blocks with the
directions: ‘Place beetle on block A and strike smartly with block B’. Perhaps
there is a message here for anybody who expects PDP networks to solve all our
computing problems: the representation of the problem, the choice of
architecture for the network and the control of its activity may well be the most
challenging parts of the enterprise.

The chapters by Hinton and by McClelland are, in their separate ways,
pioneering studies in PDP modelling. It is worth reflecting why an associative
net without hidden units could never learn the two family trees that Hinton’s
network appears to master. It would, for example, be unable to ‘notice’
(becuase of its incompetence with the ‘exclusive or’) that person 1 and person 2
always belong to the same subset of the individuals mentioned (the English
family or the Italian family), never to alternative subsets. Hinton is well aware
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that a considerable element of intuition is involved in the design of a PDP
network to solve a given learning task; but as he points out, rule-governed
network design is unlikely to become a reality until we have a good
mathematical theory of learning tasks in general.

McClelland’s chapter gives substance to Piaget’s notion of ‘the equilib-
ration of structures’ in the mind of the developing child. The scientific status of
this concept has always seemed a little precarious: how could one submit it to
logical or experimental test? McClelland’s PDP model for Siegler’s balance
beam task meets the case admirably, and interprets in detail a number of
striking facts about the stages through which children pass in learning the
task. Were that all, one might feel inclined merely to add it to the growing list
of successful PDP models; but McClelland has succeeded in distilling from the
back-propagation algorithm used by the model a learning principle that he
states in the following terms:

Adjust the parameters of the mind in proportion to the extent to which their adjustment
can produce a reduction in the discrepancy between expected and observed events.

Such adjustments are, as he points out, exactly what are called for by the back-
propagation algorithm, which Hinton explains in his chapter and also uses in
his relationship-learning network.

Where we are

Everyone seems to agree that we would dearly like to have more theorems
about what can or cannot be learned by PDP networks, and what
architectures are required for the acquisition of given sorts of skill. In the past
the computational modelling of cognitive skills (Longuet-Higgins 1987) has
been carried out in languages designed for serial rather than parallel
computers, but such work is not necessarily outdated by a shift of emphasis in
the direction of PDP. The issue is, in any case, less a matter of principle than of
implementation. In the meantime it is surely to be hoped that the art of PDP
modelling will soon mature into a computational technique at least as reliable
and versatile as more conventional methods of cognitive modelling.
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