LEARNING
MICRO-PROLOG
A PROBLEM-SOLVING
APPROACH

Tom Conlon



LEARNING
MICRO-PROLOG

A PROBLEM-SOLVING
APPROACH

Tom Conlon

Computer Education Department
Moray House College of Education
Edinburgh, Scotland

A

vy

Addison-Wesley Publishing Co, Inc.
Reading, Massachusetts - Menlo Park, California -
Wokingham, England - Don Mills, Ontario -

Amsterdam - Sydney - Singapore - Tokyo - Mexxco City -
Bogota - Santiago - San Juan



Library of Congress Cataloging-in-Publication Data
Conlon, Tom, 1954-
Learning Micro-PROLOG.

Bibliography p

Includes index

1. Micro-PROLOG (Computer program language)
1. Title.
QA76.73.P76C66 1985 005 13’3 85-15051
ISBN 0-201 11241-8

© 1985 Addison-Wesley Publishers Limited

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or other-
wise without prior written permission from the publisher. Printed in
the United States of America. Published simultaneously in Canada.

Mustrations by Michael Davidson.
Cover design by Marshall Henrichs.
Typeset by Computerset (MFK) Ltd, Ely, Cambridgeshire.

ABCDFEFGHIJ-AL-898765
First printing, September 1985



Preface

This book is based cn a course of work which has been written,
taught, and extensively re-written over an approximately two-year
period. It centers on the programming language PROLOG, and on
the use of PROLOG to solve problems. The version used throughout
is micro-PROLOG (release 3.1 or later), which is now available for a
wide range of hardware such as MS DOS and PC DOS. systems
including the IBM PC, and most CP/M systems. Micro-PROLOG for
various other computers, including the Apple Il and the Commodore
64, will be released in the very near future.

My original students were drawn variously from the upper years of
secondary education. Naturally, then, I hope that the material be-
tween these covers will interest this group. But computers respect
neither age nor position, and really there is no reason why anybody
should not learn from the book, whether they happen to be following
a course of study or not. (The majority of present-day computing
professionals, for instance, will find that most of the ideas contained
here are new to them.) I have taken for granted no particular
knowledge of mathematics or computing, although the book does
assume that the reader has access to a PROLOG computer system.
This is strongly recommended, although not absolutely necessary.

I believe that the content is worthwhile for two main reasons. The
first is that it provides an introduction to a radically different
approach to computer programming, one which is powerful,
relatively easy to understand and — especially in view of fifth genera—
tion computing developments — likely to be of sharply increasing
importance. The second reason is that a PROLOG computer system
happens to be a marvellous tool for problem-solving, an activity
which most human beings (given half a chance) find compelling.
Problem-solving is both useful and educational too, but I think the
reason why people choose to spend so much time solving problems
(with Rubik cubes and adventure games, bridge matches and
crosswords, dominoes and chess, crime stories and logic puzzles. . .)
is that problem-solving is great fun in its own right. Hopefully, after
reading this book you will think so too.

ii



Acknowledgements .

Many people have contributed to the ideas whlch 1 have tried to
present in this book. The influence of both Robert Kowalski and
George Polya is especially acknowledged.

Keith Clark of Logic Programming Associates (which has done
tremendous work in making PROLOG available on low-cost
microcomputers) is to be thanked for his help, as is Paul Fellows of
Acornsoft.

Many colleagues and friends have read and commented upon
various parts of the manuscript at different stages, and I would like to
thank George Connell, Brian Higgins, John McCarney, John McGee,
Shiona McDonald, Douglas MacKenzie, Jeremy Nicoll, Margaret
Somerville, Robb Sutherland and Tony van der Kuyl.

Peter Barker, my head of department, is to be thanked for his
support and unfailing good humour.

Credit is due to the pupils of Jordanhill College School, Glasgow,
and Beath High School, Fife, who were the main guinea-pigs in the
development of this material, and to the teachers who made it
possible.

A large number of teachers and lecturers have been the victims of
my attempts to explain PROLOG, and for suffering me w1thout
silence 1 am grateful to them all.

Jean Casey is to be thanked again.

None of the people mentioned above are to blame for any weak-
nesses or mistakes, whether real or imaginary, which are discovered
in this book. These, alas, must be down to me.

Edinburgh Tom Conlon
September 1984

A BRI

iv



Contents

1

The Problém-solving machine

Two styles of programming 1

The declarative approach 3
PROLOG and the fifth generation
Summary 5

Writing and using descriptions
Facts and rules 6

Switching on 11

Forming is-queries 15

Forming which-queries 17
Variables in rules 21

More about atoms and terms 24
Summary 29

How PROLOG solves goals
Evaluating goals with facts 32
Evaluating goals with rules 44
Tracing evaluation 51

Flow diagrams 58

Summary 61

A toolkit for description

SlM 63

TIMES 64

INT 65

LESS 66

EQ 66

Pand PP 67

R 68

Two comments on evaluation 69
Summary 70

Representing objects
About lists 73
List notation 75



Standard list relations 78
Recursive relations 92
The int-in relation 94
Summary 96

A framework for problem-solving
Magic wands and common sense 98
Example: a mystery number 100
Three types of problem 110

A general framework 111

Top-di:wrn description 116

Sumniary 117

Some problems solved

A raaii-order database 120

The rabbit colony 125

Making a gazetteer 130
Conversations with a computer 139
Tic-tac-toe 147

Crossing a river 158

Robot navigation 166

Some problems suggested 173

Answers to Exercises 177

Suggestions for further reading 181

Index 182

vi



The problem-
solving machine

The history of the modern electronic computer spans less than half a
century, but it is a history of dynamic change We begin with a bnef
consideration of the place of PROLOG in that history.

TWO STYLES OF PROGRAMMING

A computer is a machine for solving information problems. It is a tool
which expands the power of the mind, just as older tools — the lever,
the steam engine and the aeroplane, for example — expanded the
power of the human body.

To use a computey for problem-solving requlres that we communi-
cate with it. At root, this communication is through the activity of
programming.

One way of programming a computer is to tell the machine exactly
what to do. That is, we present it with a sequence of instructions



which we know will lead to a solution to the problem in which we are
interested. Such a program might look like this:

FOR'N = 3 70 100

LET I =2 ‘

IF N/I = INT(N/I) THEN 6 .
IF I < SQR(N) THEN LET I = I+1 : GO T0 3
PRINT N

NEXT N

O WV BN -

The computer obeys the instruCtions more or less blindly, like a slave

“which has been given its commands.

This is the imperative(? style of programming. It is the style which
has been employed with the first four generations of computers, from
the pioneering vacuum-valve machines of the 1940s through to com-
puters which were based in turn on transistors, on the first silicon
chips and on the microprocessors of today. A variety of imperative

- programming languages have been developed, for example BASIC,

LOGO, COMAL and Pascal: these languages reflect different ideas
about the best ways in which to write the instructions.

The imperative style has been established for so long that many
people (especially people who have programmed computers) find it
hard to imagine any alternative to it. But an alternative becomes

. obvious when you ask yourself a simple question. Suppose you have

a problem, and you are lucky enough to have access to a really
powerful problem-solving machine. How would you actually like to
be able to communicate with the machine? Most people agree that
they would wish to be able to describe their problem to the machine
in general terms, probably by talking to it in English. The computer
should then supply the answer. That, after all, is how we communi-
cate with human problem-solvers such as, say, doctors, lawyers,
architects” or whomever.

For the moment, let us leave aside the desirability of talking to a
computer in English, and concentrate on the idea of communicating
any kind of a description of the problem. Is the idea feasible? Could a
computer solve a problem just on the basis of a description? In
theory, yes: providing the description contains all the information
which is needed to solve the problem, then a smart enough computer
should be able to use it to work out the answer. With such a com-
puter, we would not need to provide instructions telling it how to use
the information: it would be enough to declare all the relevant aspects
of the problem to be solved, and let the machine take over from there.



That is the essence of the declarative style of programming.

THE DECLARATIVE APPROACH

What will a program written in the declarative style be like? It should
not be too different from the kind of descriptions which are supplied
to human problem-solvers. For instance, in communicating a prob-
lem to a doctor, a patient will give descriptions like:

The pain is on the right side of my chest.
and:
My head spins if I climb the stairs quickly.

These are statements communicating a fact and and a rule respec-
tively. A declarative program written for a computer is precisely like
this: it is a description which takes the form of a set of facts and rules.
Let us look at an example of one of these programs. The following'is
part of a declarative computer program designed to solve medical
probiems: » '

1 Asthma sufferers should avoid smoky atmospheres.
2 The atmosphere in Ed's Bar and Grille is smoky.
3 Henry is an asthma sufferer.

If the problem is:
what should Henry avoid?

then a computer using this program should be able to answer Ed's
Bar and Gri L Le. It's quite reasonable to expect the computer to be able
to find this answer, since it can be arrived at by applying logical
deduction to the description. And logical deduction is something
which a smart computer should be good at. R
Notice however that we should not expect more than isreasonable.

The patient in the doctot’s surgery can dither, and get confused over
the symptoms, and generally mess up the description of the problem;
the doctor can usually be relied on to make sefise of it all. It would be
foolish to put such obstacles in the way of a computer. The declara-
tive approach is more likely to be successful if programs aré very
precise, ideally written in some language which is tailored for exact
logical description. Notice, too, that in solvirig a problem the doctot

3



adds a large quantity of additional knowledge to the patient’s
description; logical deduction is applied to the combination of the
two. A declarative program for a computer on the other hand will be
required to supply every scrap of information needed to solve the
problem. We can expect that the problem-solving machine is capable
of logical deduction, but we mustn’t assume that it has access to any
more knowledge than that which is contained within its program.

Yet the attractiveness of the declarative approach is clear from a
comparison of the two programs shown above. Declarative programs
should always be easier to understand. Since they are simply descrip-
tions of problems, and not recipes for solving them, they should be
easier to write. The meaning of a declarative program is self-evident,
whereas, to understand the meaning of an imperative program, you
are forced to think in terms of the behavior which the program will
produce on a machine. And the connection between the machine’s
behavior and the problem which is being solved can be very obscure.

The end result of the declarative approach, of course, should be
computers which are more effective problem-solving machines at the
service of humankind.

PROLOG AND THE FIFTH GENERATION

Why have the first four generations of computers been programmed

‘imperatively? The short answer is that computers have mainly been
too small, too slow and above all too stupid to support the declarative
style. But the fifth generation, which is being developed now, pro-
mises to overcome these limitations. Exactly what fifth generation
computers will be like, nobody yet knows: but it is a very sure bet
that, while imperative programming will not disappear, the declara-
tive approach will become increasingly important.

The programming language which is at the center of some of the
most important fifth generation developments is called PROLOG.
PROLOG — the name stands for ‘PROgramming in LOGic’ — is the
most successful declarative language which has been developed to
date. Already it has been used to build expert systems, to analyze
natural languages, to prove theorems in mathematics, to construct
translators for computers, and to solve problems in a host of other
areas. It must be said that PROLOG, as it exists today, falls short of
the declarative ideal which has been described above. Its limitations
principally mean that programmers cannot altogether ignore the

4



ways in which their descriptions will be used by the computer. In
spite of this, a PROLOG computer system is still an enormously
powerful problem-solving tool. This we shall discover for ourselves
in what follows.

We end this introduction with some PROLOG terms which we
shall require immediately. A set of facts and rules which makes up a
problem description in PROLOG is called a program or database (the
two words are used interchangeably). Each fact and rule is known as
asentence; sentences must be written in a special precise form known
as sentence form. A question to the computer is called a query. A
query is really a request that the computer should solve a problem.
This it will try to do by applying logical deduction to the sentences in
the database.

SUMMARY

(1) Computers are tools for solving problems. The imperative style
of programxmng is concerned with communicating with com-
puters by glvmg them instructions. The declaratlve style is con-
cerned with giving descriptions.

(2) A declarative program consists of a set of facts and rules, written
in a precise form, which contains the information necessary to
solve the problem. The computer solves problems by applying
logical deduction to the facts and rules.

(3) PROLOG is the first successful language for declarative

programming. It is the core language of important fifth genera-
tion computing developments.

NOTES

. (1) Literally, ‘imperative’ means ‘commanding’.

§



2 Writing and using
descriptions

fish...and havea /
. car...andarenot |

alled Barry...
© and... //

The aim of this chapter is to provide an informal introduction to the
PROLOG way of writing descriptions. We practice writing facts and
rules in sentence form, we fihd out how to enter a database into the
computer, and we make up queries to solve some simple problems.

FACTS AND RULES

Let us pretend that we have arrived at a party. The music is loud, the
lights are low and we are among friends. The scene cries out for
description — so we shall wander round, gathering facts and rules as
we come across them, and writing them down first in English and
then in PROLOG.

We quickly notice that Bill is sittioy next w jean, gazing at her
adnuringly. Clearly Bill likes Juan. That gives us our firsi fact. in the
form of a PROLOG sentence, we wiite it as:

tikes(Bill Jean) (1

6



The PROLOG and the English versions of the sentence are not all that
much different.

Sam, the acting barman, has started to tell us a long gossip story.
The details are too complicated to relate, but it can be summed up by

writing down two more facts about people who like other people. In
PROLOG, the facts are:

Likes(Diane Colin) k ()
likes(Janet lan) (3)

PROLOG facts have a special structure. They comprise a term by
itself called the predicate followed by a bracketed list of terms called
the arguments. Predicates roughly correspond to verbs in English
sentences, and arguments correspond to nouns. So far, our facts
have all had Likes as the predicate and the arguments have been the
names of individuals. Note that the order of the arguments matters:
saying that Diane likes Colin is not the same thing as saying that
Colin likes Diane, neither in English nor in PROLOG.

Speaking of arguments, loud voices are coming from one corner of
the room. A disagreement has begun over the kind of music which is
to be played. Diane is an avid rock fan, while Jean enjoys reggae and
lan favors heavy metal bands. You decide to set down the facts in
PROLOG: :

enjoys(Diane rock) 4)

enjoys{Jean reggae) ®)

enjoys(lan heavy-metal) (6)

The predicate here is enjoys. The first argument is the name of an
individual; the second is the type of music which is enjoyed. Some-
times we use the word relation instead of predicate, and say that the
above are ‘facts for the enjoys relation’. Notice the hypheninheavy-
metal, making it one term instead of two. Spaces and brackets are
used to tell PROLOG where one term ends and another one begins.
Putting a hyphen in heavy-metal makes it a single term, like rock
and regjgae.

Suddenly your eyes start to water and you are coughing. The air
has grown thick with tobacco smoke, and you look round for the
culprits. Just as you expected: Diane and Tan — the two notorious

puffers — are smokmg away. The facts are simply descnbed in

PROLOG:



smokes(Diane) 7)
smokes(Ian) ' 8)

* “This time the predicate is smokes and the single argument is the name
of the smoker.

But smoking is not Diane’s only vice. At this very moment, she is
being given a large gin and tonic by Sam. It looks as though Sam may
have a busy night: he has just given a cola to Colin, and now he is
about to fill a glass of white wine for Jean. You note down the facts in
PROLOG:

gives(Sam Diane gin-and-tonic) 9)
gives(Sam Colin cola) (10)
gives(Sam Jean white-wine) (11)

Notice again the use of hyphens to ensure that each fact has the same
pattern as the other facts for the gives relation. It is important to be
consistent about the number of arguments and the position of each
argument, as will become clear later.

By now the structure of a predicate followed by a list of arguments
will be quite familiar. This structure is so fundamental in PROLOG
that it is called atomic. Anything which has the structure is an atom.
An atom describes a relationship between individuals or objects: a
fact is a sentence which asserts that a relationship is true.®

Meanwhile, Janet has told you that whenever she smokes, she
becomes ill. For her, it is an absolute rule. That gives you a chance to
write down your first ever PROLOG rule. A rule has two parts known
as the consequence part and the condition part. It is important to
identify each part. In our rule, the consequence that Janet is ill
holds true on fulfillment of the condition that Janet smokes . Turning
the consequence and the condition into atoms, we can write
ill(Janet) and smokes(Janet) respectively. Then a PROLOG ver-
sion of the rule is the sentence:

ill(Janet) if smokes(Janet) (12)

Every PROLOG rule takes the form of an atom which describes the
consequence part of the rule, followed by the word ‘i f*, followed by
the atoms which make up the condition part (joined by the word ‘and”
- or ‘&’ if there is more than one). Sometimes we call the consequence
part the head and the condition part the tail of the rule. As you can
see, the correct form (or syntax) of a PROLOG rule is very simple, but



for the computer to understand the rule the syntax must be followed

exactly.
We get our second rule from Jean. She has not yefmet Ian, but if he

turns out to be a heavy metal fan then she intefids to partner himina ..

dance. You note the consequence part of the rule: it is that Jean
partners Ian. You note the one condition: that 1an enjoys heavy
metal. To obtain a PROLOG translation of the rule, we turn these
two into atoms and connect them with an ‘if’. So we write:

partners(Jean lan) if enjoys(Ian heavy-metal) (13)

Jean seems to have started something here. Janet says that she too
will partner Ian if he is a heavy metal fan, but she adds the extra
condition that Ian must like Bill. You note the consequence: it is that
Janet partners Ian. You note the two conditions: that Ian enjoys
heavy metal is one; and that Ian Likes Bi L L is the other. Re-writing
each of these in atomic form leads to a PROLOG version of the rule:

partners(Janet Ian) if (14)
enjoys(lan heavy-metal) & '
likes(lan Bill)

Setting it down over several lines like this makes the rule a little easier
to read. Note that where a rule has more than one condition, as here,
all the conditions must be true in order to prove that the consequence
is true. So Janet might not partner Ian if he is a heavy metal fan but
does not like Bill, for instance. '

Diane isn’t one to be left out of this game. She proclaims that she
will partner Sam in a dance if Sam gives her a gin and tonic, on
condition also that he does not smoke. You identify the consequence
and the two conditions, and you set down Diane’s rule as a PROLOG
sentence: .

partners(Diane Sam) if (15)
gives(§am Diane gin~and-tonic) & '
not smokes(Sam)

A set of two or more conditions joined with ‘&’ or ‘and’ is sometimes
called a conjunction. The second condition in the conjunction above
isan example of a negation. A negation is formed by putting the word

‘not” in front of an atom. Negations can appear anywhere in the tail of
a rule; but it is one of the restrictions of the PROLOG language that



Likes(Bill Jean) (1)
Likes(Diane Colin) (2)
Likes(Janet Ian) . ’ 3
enjoys(Diane rock) )]
enjoys(Jean reggae) 5)
enjoys(lan heavy-metal) : 6)
smokes(Diane) (7)
smokes (Ian) - (8)
gives(Sam Diane gin-and-tonic) ‘ 9)
gives(Sam Colin cola) (10)
gives(Sam .jean white-wine) _ (11)
ill(Janet) if smokes(Janet) X (12)

partnersfjean Ian) if enjovs(lan heavy-metsl) . (13) [

partrers(lanet Ian) if : (14) |

’ enjoys{ian heavy-metal) & ;

“Likes(Ian Bill) |

i

partners{Diane Sam) if ) A (15) |

’ gives(Sam Diane gin-and-tonic) & !

not smokes(Sam) I

Fig. 2.1 PARTY.
the beesd vr o sie must not be a negation. That is, the consequence of

a RO 70 yuw must always be an atom,

At thas juntture we shall leave the party. The cool night air and the
quiet coines as a welcome change after all that smoke and noise. In
any cas o+ vow have guite an interesting description of the evening
in the torme of o database which we shall name PARTY. It contains
fifteen sentences -— eleven facts and four rules — which for conve-
nience are gathirred togetherin Figure 2.1, For now, it's ime to find
out how we can transtat PARTY from our notepad on to a computer
so that PROLOG can use it to solve some: problems.?®

I3



