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PREFACE

“Ocean floor petrology’’ is concerned primarily with the study of volcanism
and related processes involving the creation and the transformation of crustal
material which takes place at contact with seawater. The field of ocean floor
petrology has developed and will continue to evolve rapidly with man’s effort
to penetrate and explore greater depths through the use of more sophisticated
technology. The present work was initially intended to be a comprehensive
review of the major mineralogical and geochemical investigations carried out
in the study of oceanic crust. However, during the process of gathering the
data together, new information has been added in order to further increment
our knowledge of the oceanic crust.

It is not the pretense of this work to give a complete coverage of ocean-
floor genesis, but to give insights into the compositional diversities of basement
rock samples associated with various geological settings. Since the petrological
studies of the ocean floor are interrelated with other disciplines, an attempt
has been made throughout this work to cover some general aspects of the
morphology and the structure of oceanic features for which data and samples
are available. Both the sampling and the gathering of other geological data
from the ocean floor have been found to be an expensive and difficult task.
Submersibles and unmanned bottom-navigated instruments have demon-
strated their efficiency and are prerequisites for sea-floor exploration in order
to implement further detailed studies of magmatism, hydrothermalism and
structural processes related to different types of geological features.

This book has been divided into twelve chapters which can be separated
into two main parts. The first part, including Chapters 1 through 8, deals with
the composition of the oceanic basement associated with the various types
of structures thus far recognized and sampled. Since oceanic ridges are one
of the main features and also the most accessible for sampling, they are the
best known. Even so, we are far from having a clear picture of the deep-seated
processes involved in the creation of new crust. Only a few segments of
oceanic ridges have been studied in detail using advanced technology. The
FAMOUS project (Franco-American Mid-Ocean Undersea Study) and project
RITA (study of the Rivera and Tamayo Fracture Zones) provided new
structural and petrological data for the understanding of plate boundaries
accreting at different rates in the Atlantic and Pacific Oceans. Deep-sea
drilling has proved to be invaluable in recovering samples in heavily sedimented
areas hitherto inaccessible by other methods of sampling,

Other major oceanic structures such as aseismic ridges, which are thought
to be chains of elevated edifices active during the early stage of the separation
of the continental masses, are still inadequately sampled. The crustal compo-
sition of oceanic trenches is also poorly known. More sampling of the outer
island arcs or ocean-side regions of the trenches is necessary in order to have
more insight into crustal behavior prior to the plunging of the lithosphere.
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Other poorly known regions, located at the plate boundaries and character-
ized by both extensional and compressional plate motions, have been tenta-
tively called thrust-faulted regions and these are also discussed.

The aspect of subaerial ophiolites and their inferred occurrences in an
oceanic environment has not been discussed in depth in this book. Obviously,
this subject is of great interest in understanding the early emplacement of
ocean-floor ultramafic and mafic complexes at accreting plate boundaries.
The lack of a continuous section through layers 2 and 3 of the oceanic crust
has, up to now, prevented marine geologists from making any meaningful
correlation between subaerial ophiolites and similar oceanic types of rock
associations.

The second part of the book (Chapters 9, 10, and 11) deals mainly with the
alteration of oceanic crust after its creation when exposed to the progressive
effects of weathering, hydrothermalism, and metamorphism.

So far, the economic aspects of deep-seated oceanic environments have
been centered on the study of polymetallic manganese nodules (made up of
Mn, Fe, Ni, Cu). However, the mineral wealth of the ocean floor is still not
well assessed and it was only recently (1979) that massive sulfide deposits
with higher metal concentrations than those of the manganese nodules were
seen to be formed at depths of 2600 meters. It is necessary that future
exploration be oriented towards a systematic interdisciplinary study of
oceanic ridges and associated fracture zones in order to obtain more insight
into the genesis of ore deposits in both oceanic and subaerial regions.

The last chapter (Chapter 12) deals with subcrustal and upper mantle
processes related to accreting plate boundary regions. This chapter is based
on inferences made from major experimental petrological work and geo-
physical investigations carried out on oceanic rocks and environments.

As we increase our knowledge in oceanic petrology, the questions become
more complex, the problems more complicated. Oversimplification is replaced
by a feeling of confusion, albeit closer to the ‘“truth”. It is essentially due to
the increasing complexity of the field of oceanic petrology that an inter-
disciplinary approach is vital in future work.

ROGER HEKINIAN
St. Renan, 30 December 1980
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CHAPTER 1

MINERALOGY AND CHEMISTRY OF OCEAN FLOOR ROCKS

ULTRAMAFIC ROCKS

Most of the ultramafic rocks found in the ocean floor are serpentinized to
various degrees. It is also observed that in many cases the serpentinized
peridotites collected from various structures of the ocean floor are accom-
panied by gabbros and sometimes by minor amounts of anorthosite. Basaltic
rocks are also intermixed in various proportions within the dredge hauls,
suggesting that some kind of interrelationship might exist between these
different rock types. The distribution of ultramafics from the ocean floor
is shown on a world map in Fig. 1-1.

Serpentinized peridotite

It 1s often difficult to establish the primary composition of altered perido-
tite. Assuming that the serpentinization of oceanic peridotite proceeds under
isochemical conditions, we can therefore convert the silicate analyses to
anhydrous residue in order to obtain the primary normative composition of
the peridotitic material. Chemical analyses of some serpentinized peridotites
are shown in Table 1-1,

Serpentinization is a process of alteration of an original mineral, usually
pyroxene or olivine, which gives rise to different types of serpentine minerals
and structures. Often the original rock structure and mineral outlines are
preserved, and it is sometimes easy to reconstruct the ghost minerals. Two
examples where these may be readily recognized are the formation of bastite
from pyroxene and the preserved sharp outlines formed by Fe-oxide minerals
replacing many olivine crystals.

The texture of serpentinized peridotite varies. There are massive varieties
with allotriomorphs of polygonal olivine relics and crystals, and xenomorphic
randomly oriented tabular pyroxene. Other textural features, such as linear
orientation or a contorted appearance of mineral grains are often encountered
in specimens of serpentinized material. Some pyroxene minerals show
deformed twin lamellae and broken-up plagioclase crystals, and an effect of
granulation on mafic minerals may also occur. These later textural features
are attributed to cataclastic metamorphism (see Chapter 9).

Because of the different degrees of rock serpentinization, some authors
(Dmitriev and Sharaskin, 1975) think that there are at least two stages of
serpentinization. The first stage consists of uniform serpentinization of
minerals (pseudomorphism) with no signs of alteration of the primary rock
fabric, while the second stage consists of the formation of veins and veinlets
plus many new mineral phases due to the recrystallization of serpentine.
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—-DISTRIBUTION OF ALPINE-TYPE ULTRAMAFICS
# DISTRIBUTION OF ULTRAMAFIC FROM THE OCEAN FLOOR

BATHY 41000 FATHOMS
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Fig. 1-1. Distribution of ultramafic rocks recovered from the ocean floor, The black dots
and stripes plotted on the continental regions are the alpine type of ultramafics reported
in Irwin and Coleman (1974). ‘













