- “Software
~ Portability

Olivier Lecarme

Mireille Pellissier Gart

Mitchell Gart

Expanded Edmon"

Software

Portability

With Microcomputer Issues

Olivier Lecarme

Laboratoire d’Informatique
Unliversité de Nice, France

Mireille Pellissier Gart

Intermetrics -

" ' Cambridge, Massachusetts

Mitchell Gart

-~~~ ‘Waltham, Massachusettls

Expanded Edition

McGraw-Hill Publishing Company -

New York St Louls San Francisco Auckland Bogots
Caracas Hamburg Lisbon London Madrid Mexico
Milan Montreal New Deihi Okishoma City

l Paris San Juan S#&o Paulo Singapore
"Sydney Tokyo Toronto

f

Library of Congress Cataloging-in-Publication

Lecarme, Olivier
Software portability.

Bibliography: p.

Includes index.

1. Software compatibility. 2. Microcomputers—
Programming. 1. Pillissier Gart, Mireille.
11. Gart, Mitchell. TIII. Title.
QAT6.76.C64143 1989 005.1 89-2284
ISBN 0-07-036964-X

This book was previously published by McGraw-Hill under the title
Software Portability.

Copyright © 1989, 1986 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

1234567890 DOC/DOC 894321098

ISBN 0-07-03L9L4-X

The editors for this book were Theron Shreve and David E
Fogarty, the designer was Naomi Auerbacheen@ the-producing
supervisor was Richard A. Ausburn It was set in Primer by
TCSystems, Inc. LS

Printed and bound by R. R. Donnelley & Sons Company.

-
e

Limirs oF LiasiLiTy anp DiscLAIMER oF WAMY

The author and publisher have exercised care in preparing this book and the
programs contained in it. They make no representation, however; that the
programs are error-free or suitable for every application to which a reader may
attempt to apply them. The author and publisher make no warranty of any kind,
expressed or implied, including the warranties of merchantability or fitness for a
particular -purpose, with regard to these programs or the documentation or
theory contained in this book, all of which are provided “as is.” The author and
publisher shall not be liable for damages in an amount greater than the
purchase price of this book, or in any event for incidental or consequential
damages in connection with, or arising out of the furnishing, performance, or use
of these programs or the associated descriptions or discussions.

Readers should test any program on their own systems and compare results
with those presented in this book. They should then construct their own test
programs to verify that they fully understand the requisite calling conventions
and data formats for each of the programs. Then they should test the specific
application thoroughly.

For more information about other McGraw-Hill materials,
call 1-800-2-MCGRAW in the United States. In other
countries, call your nearest McGraw-Hill office.

Preface

During the past three years, the relative importance of personal computers and
workstations has continued to grow steadily. Although most of the methods, tools,
and techniques presented in the book are equally applicable to personal com-
puters, it seemed worthwhile to devote a complete new chapter in an expanded
edition to this important part of the software industry. -

Due to the lack of written materials on the subject, an original method was
used. An inquiry was conducted, in the form of a mail and phone survey. Personal
computer software vendors and users were questioned about their experiences in
software portability, and their experiences were collected. This was done by
Mitchell Gart, during the period between December 1986 and February 1987.
Mitch is thus the main author of Chap. 8.

The other significant addition is the Appendix, “Practical Guide to Writing
Portable Software.” This section was also written mainly be Mitchell Gart, whose
invaluable contribution to this expanded edition merits his inclusion as an
additional author. '

Chapters 1 to 7 have not been revised, although some shifts of emphasis
between several minor points have occurred during the past three years. For
example, the situation in software property rights (Sec. 2.4) has continued to
evolve, punch cards and paper tape (Secs. 2.1.4 and 2.1.6) are more obsolete than
they were in 1983, and Ada has emerged as an important language for writing
portable software (Sec. 4.2.3).

Olivier Lecarme

vil

Preface to First Edition

Software portability is an idea whose time has come. More and more often,
potential software customers are asking whether a specific software product is
portable. More and more often, advertisements and promotional literature use
portability as a sales feature.

The fact that software has become more and more expensive in comparison
with hardware costs has led to this state of affairs, heralded several years ago
when vendors introduced “unbundling,” or separate sales of hardware and
software. Computer users often perceive this relatively recent development as a
major advantage, because their investment in software no longer necessarily ties
them to one hardware vendor, and portability is now considered one of the major
features of software products.

It should also be noted that the increasing complexity of programs has moré
and more often required that they be written in higher-level languages. This
factor has contributed greatly to (at least partial) program portability.

As frequently discussed as the notion of portability is, however, it carries many
different meanings. Portability problems are often underestimated, partly be-
cause so many different aspects of computer science may affect portability. Thus,
though a unifying synthesis seems especially desirable, it is presently lacking.
Two books have been published about the subject: the collection of papers edited
by P. J. Brown [Bro77a} and the small monograph by P. J. Wallis [Wal82). The
first book, because of its very nature, lacks unity, and it fails te treat some
important aspects of the subject. It is becoming somewhat outdated. While the
second book constitutes a good introduction, it is too short and too general to
provide all the necessary information.

The purpose of this present book then is to answer the need that we feel for a
relatively complete synthesis of software portability. Of course, we are fully aware
of the imperfections of our work, and although we hope we have omitted no
important facet of the subject, we also hope that our very extensive bibliography
will help those readers who are eager for further study.

This book can be used in any of three ways. First, it can be read by computer
users who want to self-study the subject. Whether they are application program-

Ix

x Preface to First Edition

1€rs, system programmers, or computer praject managers, all interested readers
hould find something of value in our text. There should be no part too difficult
for a reader with a computer science degree or with equivalent experience.

i Second, our book is designed to serve as a complementary textbook for a

+ general course in software engineering, such as those found more and more often
in undergraduate computer science curricula. Although it considers the vast
subject of software engineering from a specific point of view, our text covers a
large part of what is generally taught in this area.

And finally, our book is designed to serve as a basis for a specialized course on
software portability. Such a course could occur at the graduate level in computer
science curricula, probably following a general software engineering course. Or it
could be used in a special seminar of one or two weeks. In such a course, lectures
could emphasize new case 'studies, while our book could provide students with
the necessary bases and references.

The idea of writing this book first occurred to us in 1980. Work in the software
engineering group of the computer science laboratory at the University of Nice

" led to two doctoral theses [ThP77, Pel80] and two papers [LPT78, LPT82a). We
studied software portability as thoroughly as possible, and we came to regret the
lack of a comprehensive textbook in the available literature. Thus, we proposed to
give a course on this subject during the annual informatics summer school of
AFCET, the French computer society. The idea was submitted in July 1980 and
was accepted for the 1982 session of the school.

The first version of this text [LPT82b] was written as course support between
December 1981 and June 1982. The course was given at the summer school in
Namur, Belgium, as a sequence of eight 1%-hour lectures. Comments and
criticisms from the audience, together with the experience we gained in giving
the lectures, helped us t¢ rgyise that first text and to enhance it with the addition
of two important chapters containing case studies.

Thus the division of the present book into parts and chapters evolved rather
slowly, the text itself passing through at least five stages. Broad organizational
changes finally brought about a scheme that makes sequential reading of the text
as easy as possible.

The most interesting and novel aspects of our work deal mainly with the
collection under one cover of ordinarily scattered or inaccessible information and
with the system of classification and clarification that we have devised. The size
of the bibliography will give the reader an-idea of the amount of documentation
we examined and of the quantity of more-or-less relevant information we sifted in
writing this book.

‘ In its final state, this book is signed by only two authors. We wish to
acknowledge especially, however, our debt to our colleague, Marie-Claude
Thomas, of the University of Nice. She not only worked on the whole subject unti} °
1981, but she attended all the discussions and working sessions that preceded the
summer school at Namur. She wrote the French text of two very sensitive
sections, those dealing with data portability (Sec. 2.3) and with software property
rights (Sec. 2.4). She is presently working in a completely different research area.
and it is because of this, and only at her explicit request, that she does not appeal
as an author.

Preface to First Edition xi

This book was first published in French [LeP84], then translated into English.
This work was done by the authors themselves, with the invaluable aid of
Mitchell Gart, Mireille’s husband, who also wrote the first draft of the case study
based on the Unix system (Sec. 7.2). Contributions, by Mitchell and by Reba
Krause to Sec. 2.4 were especially helpful in adapting this part of the text to the
American environment.

Finally, we wish to thank the 1982 AFCET summer students, and especially
the AFCET summer school director, George Stamon, as well as all our colleagues
at the Informatics Laboratory at the University of Nice, at the Research Center of
CII-Honeywell Bull in Louveciennes, France, and at Intermetrics in Cambridge,
Massachusetts.

Olivier Lecarme

Mireille Pellissier Gart

Preface

vii

Preface to First Edition Ix

Chapter 1

Part 1
Chapter 2

Chapter 3

Chapter 4

Introduction

1.1 Why Should Existing Software Be Transported?
1.2 Why Should We Build Portable Software?

1.3

What Software Is Potentially Portable?

The Bases of Portability

The Major Problems in Software Portability

The Portable Software Environment 9

4

The Portability of Numeric Software 22

The Portability of Data 28
Software Property Rights and Protection

Software Tools of Transport

3.1
32
3.3
3.4
35

Macroprocessors 46

3

34

Higher-Level Language Translators 54

Verifiers and Filters 59
Generators 63
Other Tools 74

Linguistic Means of Transport

Introduction 80 :

Programming in a Higher-Level Language

The Use of Extensible Languages 96
The Use of Augmented Languages 100
The Use of Compiler-Writing Systems

103

82

Contents

45

80

vi Contents -

Language-implementation Methods

5.1 Introduction 110 :
5.2 Auxiliary Languages 116
5.3 The Production of Translators 128

5.4 The Production of Interpreters 137

Part 2 Case Studies

Chapter 6 Translators and Interpreters

Some General Observations 143
Implementation of Pascal 145
Implementations of Snobol4, SL5, and Icon 154
Implementation of Ada 165

Conclusion -~ 172

Chapter 7 Operating and Programming Systems

71
72
738
74
75

Some General Observations 173

The Unix System 175

MUSS 180

The Mobile Programming System (MPS) 188
Conclusion 193

Chapter 8 Personal Computers

8.13

Introduction 196

Realia Cobol 198

Informix 200

Whitesmiths 202

Multiplan 204

AdaSoft 206

Alsys Compilers 206 -
Assembler Rrograms and Lotus 208
Fourth Generation Languagés 211

' Operating Systems 213

Simulators 217
Standardization 218
Conclusions 220

Chapter 9 Conclusion

Appendix Practical Guide to Writing Portable Software

Bibllography 231

Index 251

110

141
143

173

196

222

224

Chapter

Introduction

Computer hardware is only as useful as its available software. It is very expen-
sive, in time and in other resources, to re-create software for every new machine,
and it is often desirable, from the user’s point of view, for the software environ-
ment to be as similar as possible on different machines. Since the available
software usually “hides” most or even all of the hardware from the user—that is,
it is the software with which the user interacts—it is useful to try and implement
the same familiar software on many different computers.

Thus, it is very frequently desirable, even at times necessary, to change the
environment of any given software product to make it work on more than one
computer and with more than one operating system. This change in environment
we call “software transport” (or sometimes “software port”). A software product is
more or less useful according to the relative ease of its “portability.”

There are many cases in which software products, to be useful at all, must
demonstrate portability. For instance, utility depends upon portability in the
cases of software packages sold by a commercial vendor; a matrix inversion
subprogram that is part of a library of scientific subprograms; computer games
programmed and distributed by a club of hobbyists; a compiler for a new pro-
gramming language, distributed by the authors of the language as a means of
promoting their work; a mailing list distributed in machine-readable form. . . .

The list of examples goes on and on, but one can readily see the variety and
complexity of the problems of portability involved. The purpose of this book is to
demonstrate how most of these problems can be solved. The rest of this introduc-
tory chapter raises three important questions and provides some tentative an-
swers.

1.1 Why should existing software
be transported?

We shall often hereafter have occasion to note the differences in point of view
between designers—those who build a software product so that it can be trans-
ported to other environments—and installers—those who install a software prod-

2 Software Portabiliity - .

uct, built elsewhere, in a new environment. For now, we state the problem from
the point of view of the installer; the point of view of the designer will be consid-
ered in the next section.

There are several possible answers a typical installer might have for the ques-
tion asked in the title of this section. It might be said that:

= It takes less time and effort to use a program already built by somebody else
than to attempt to rewrite it. This argument assumes that the transport opera-
tion itself takes less time than does the creation of a software product, thus
freeing the programmer to do other work. Independent of the work saving, time
will also be saved. (The distinction between time effectiveness as measured by
work and by calendar is important: It is not likely that a programming job
demanding one person-year could be done instead by 6 persons in two months;
nor is it conceivable that such a job could be done by 52 persons in one week.)

» The designer of a software product is most likely a specialist in the field ad-
dressed by the product, while the installer is likely not a specialist but simply a
user; or perhaps nobody with enough expertise to build such a product is
available locally.

s The particular software product might be an excellent one, a standard in the
field. (This assumes that the transport will not, as a side effect, severely dam-
age the qualmes of the product that made its transport so desirable in the first
place.)

e It is advantageous to have always at hand, even when traveling, the same
software environment to which one is accustomed. (This argument was origi-
nated by William Waite, who will be quoted many times in this book. It pre-
sumes a somewhat special situation, where the installer is also the designer.)

» A change of hardware (or operating system, or both) may be anticipated in the
near future, and it would be desirable to continue using the same software
products on the new hardware. (Reluctance to change, which sometimes
causes stagnation, may have a more positive effect in this case.)

® Transporting an existing software product helps to guarantee conformity with
what is done elsewhere. Programs will be compatible with other installations,
and validity will be improved.

* In the case where the choice is between building one new program or choosing
between several existing transportable programs, the result mlght be better
with the wider choice.

Let us note that, of course, most of the above answers have negative counter-
parts that give rise to possible arguments for not transporting existing software.
In all fairness, those counterarguments should be considered:

= If the software product has been designed specifically for portability, its perfor-

mance may be inferior.

= No software product is immune from errors and weaknesses; to transport it is to
perpetuate these shortcomings, perhaps even to increase them.

Introduction 3

= Rewriting an existing software product, instead of using it as is, may be a good
way to improve it. Often, when one builds and tunes a complex program, he or
she learns from the experience; if then the program has to be rebuilt, it will
inevitably be better.

These objections are serious, and it is not easy to answer them in a few words.
But in the succeeding chapters we will give some fairly strong reasons why
portable programming practices generally add to the overall quality of a program.

1.2 Why should we buiid
portable software?

Taking here the point of view of the designer, we can suggest some answers to
the question we ask in the title above:

= A software company builds and sells software: if its products are portable, they
will appeal to a much wider market. Furthermore, instead of building new
products for every possible computer environment, it is in the company’s own
intérest to reduce the effort needed to change from one environment to an-
other. The overall cost of developing a portable program once, and then trans-
porting it several times, is bound to be advantageous compared with rewriting
the same program several times.

® The designer as employee might contemplate changing employers and might
want to reuse programs in the new environment. (This argument is another
presentation of William Waite'’s argument.)

» Since software is becoming more expensive than hardware, its life cycle must
be made longer; that is, it must be designed to survive hardware changes.

s In the case of a newly designed programming language, portability almost
erisures broader, faster implementation.

» Further, the portability of the implementation will serve as a strong incentive to
maintain compatibility in subsequent implementations.

« Even in the case of an established, well-known programming language, highly
portable implementation will influence the shape of the official standard and
promote the ideas included in the implementation.

® In an environment that comprises several different computer systems, the
same application may be needed on each system, perhaps at the same time.

- A portable software product presents a positive sales argument.

s Anticipation that a software product will be portable is likely to have a beneficial -
effect on its programming: The style will have to be cleaner, more systematic,
more disciplined, and more readable. Hence the reliability, adaptability, main-
tainability, and overall quality of the program will be improved.

Here again, of course, one can provide several counterarguments, most of them
similar to those given in the preceding section:

s A portable software product may be more reliable and adaptable, but at the

4

1.

Software Portability

same time it might be less efficient. (Still, we have to ask: Is it so important to
produce an efficient but erroneous program?)

If one of the main goals of a software company is to develop software for new
customers and computer systems, and the software is too portable, the compa-
ny’s employees could conceivably be left with nothing to do. (Still, we have to
point out that they would then be available for developing more new software.)

Perhaps, as stated above, the overall cost to a company of developing portable
software is less than that of rewriting the same program many times over, yet
time or other resource constraints may require that the secondary goal, porta-
bility, be sacrificed so that the first version will be ready on time and/or within a
fixed budget.

If the implementation of a programming language is both easily transported
and adapted, users may be encouraged to devise their own variations, thus
negatively affecting compatibility and hampering the portability of programs
written in this language.

3 What software Is potentially portable?

By “software product” we mean here a set of programs with a common purpose.
We will not attempt to provide a more precise definition (partially because that
would require us to define precisely what a program is). But, we can give some
typical examples of software products that can be built to be portable. These
various examples will all appear again in the case studies found in Part 2 of this
book.

A compiler can be portable in its entirety if it generates an objeét language that
is independent of the target computer. This is what we will call a “compiler-
interpreter,” of which a typical example is Snobol4 (see Sec. 6.3).

A compiler can also be divided into two main parts, the front end depending on
the source language, the back end on the object language. The interface be-
tween these two parts, if well designed, can be independent of both languages.
In this case, the front end can be built to be portable (see Sec. 6.4).

A large number of utility software products can be designed to be portable, at
least in the major part. This is the case, for example, for text editors (see Sec.
7.5), general-purpose macroprocessors (see Secs. 3.1 and 7.4), various pro-
gram-conversion tools (see Sec. 3.2), and tools for verifying and filtering a
language (see Sec. 3.3). In fact, even file-management systems can be portable,
in which case they further the portability of the above-mentioned utilities.

Application software products that can be portable are still more numerous, and
in fact their design constitutes the main reason for the existence of many
software companies. We can mention, for example, company payroll, library
management, stock or portfolio management, accounting, text processing, and
the software packages and computer games that are increasingly popular for
personal computers. But neither these applications nor the techniques used in

Introduction 5

making them portable are usually described in scientific literature, and we
have no case studies for them.

s Finally, and somewhat unexpectedly, whole operating systems are now built to
be portable. The first systems of this sort were only demonstration models, but
those that will be considered in Secs. 7.2 and 7.3 are full-scale systems now in
actual use.

All things considered, a software product n.ay be designed to be portable if its
purpose does not depend on the environment in which it will be implemented. By
contrast, it is impossible to build a software product whose specifications refer to
a specific environment and expect that product to be portable. This may be the
case, for example, for the back end of a compiler, which generates machine
language, or for a link editor or an assembler, the purpose of which is also to
generate machine language. Let us note, however, that even in the cases just
mentioned, an attempt is often made to design as much of the program as possi-
ble to be independent of the target machine; it is also true that we are beginning
to develop the expertise to build portable code generators, link editors, and even
assemblers.

Still it is not yet within the state of the art to build a portable peripheral
handler, a supervisor nucleus (the part of an operating system that processes
interrupts), or even a text-processing utility linked to a specific peripheral. There
are still some cases where the major part of software development is too closely
linked to a specific computer environment to permit portability in programming.

In addition, it must not be forgotten in many cases that it is simply not desir-
" able to transport software products. Transport will be useless, or even of negative
value, if (1) the initial qualities of the product do not warrant its broad use: (2) the
transport would be too expensive; or (3) the expected performance after the
transport would be calamitous.

Thus, we can summarize in one sentence: The transport of a software product
can be considered for any product of satisfactory quality, independent of its
environment, provided the costs involved warrant the transport.

Part

1

The Bases of Portability

