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PREFACE

A number of important and interesting concepts about numerical software
began to emerge in the 1970s: concepts that are independent of traditional
numerical analysis and possess intrinsic merit and -appeal. At the same time,
experience gathered by publicly funded research projects and by the develop-
ment of commercial software libraries raised understanding of the broad issues
of numerical software production te the point that those concepts can be
woven into a body of knowledge appropriate for systematic study.

This book is my attempt to make these advancements readily accessible.
Whereas books such as Computer Solution of Mathematical Problems by
George Forsythe, Michael Malcoim, and Cleve Moler (Prentice-Hall, En-
glewood Cliffs, N.J,, 1977) teach the use of numerical software, much as
introductory programming courses teach students to use a compiler without
leaming how to build one, my goal is to present principles for writing
numerical software. The ideal textbook, about the production of numerical
software remains to be written, but 1 hope that I have verified its worth and
feasibility and hastened its arnival.

The book is primarily intended for use as the text in a one-term course
for students of computer science, engineering, science, and mathematics. It can .
also be used for self-study or for supplementary reading in a more traditional
course on numerical computation. The material is accessible to readers with
one year’s programming experience, 8 minimum of training in mathematics,
and the general level of academic maturity that can be expected of a senior
undergraduate or first-year graduate stadent.
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vili . Preface

I believe that computer scientists will find this material useful. under-
standable, and even enjoyable. Educated guesses attribute as much as 50% of
all software costs to numerical software, and it is appropriate that a study of
computer science include the issues particular to that area.

Scientists, engineers, and mathematicians can also profit from exposure
to this material. In some situations an awareness of the tremendous effort
required to produce numerical software will lead them to use packaged
software. In cases where software is not available and is worth the cost of
development, a thorough understanding of the ingredients that go into success-
ful software for several computational problems provides insight into what
must be done for the problem at hand.

The topics covered, and their order of presentation, were chosen to
proceed systematically across a spectrum of numerical software. There is.
however, some flexibility in the order that the material is studied: Chapters
3-5 can be taken in any order omee Chapters 1 and 2 have been read. while
Chapter 6 can immediately follow Chapter 1. B

The programming assignments and exercises are integral parts of the text.
I recommend that the reader write all the programs and work all the exercises,
except for material that is explicitly labeled as optional.

FORTRAN 77 programs are sprinkled throughout the book. so a reading
knowledge of the language will be needed. Experience indicates that time will
be saved in the long run if the reader invests whatever effort is needed to write
the assigned programs in FORTRAN.

I would like to thank the faeulty and students of the Department of
Computer Science at the University of Arizona for providing the ideal environ-
ment for writing this book. Many insightful suggestions were offered by Tim
Budd, Helen Deluga, Lee Henderson, James W. Johnson, and Titus Purdin.

Alan George of the University of Waterloo read the entire manuscript
and recommended several improvements. My special thanks go to Jim Cody.
Jack Dongarra, and James Lyness of the Argonne National Laboratory.
Through their writings and direct comments they have contributed immeasur-
ably to this book.

Webh Miller
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INTRODUCTION

The purpese of this chapter is to explain what the book is all aBout. We begin,
in Section 1.1, by defining some key concepts concerning the process of
developing numerical software.

Sections 1.2 and 1.3 illustrate these concepts in the contexts of solving a
quadratic equation and checking the solvability of a nonlinear equation. In
addition to clarifying our definitions, these examples provide an opportunity
for us to point out reasons why the material covered in this book is important.
In particular, Section 1.3 illustrates the difficulties associated with fixed-preci-
sion arithmetic and motivates our devoting an entire chapter, Chapter 2, to the
subject. . .

Using the vocabulary developed in Sections 1.1-1.3, Section 1.4 outlines
the common structure of Chapters 3-6 and explains the systematic differences
among them.

1.1 HIGHLIGHTS OF THE SOFTWARE ENGINEERING PROCESS

It is usefui to think of the process of producing numerical software as divided
into four activities: (1) determining specifications, (2) designing and analvzing
algorithms, (3) implementing sofiware, and (4) testing and measuring pro-
grams. Of course, the production of an actual program ofien does not {oliow
an orderly progression through these phases. (For instance. we will see that
algorithm analysis may have to precede formulation of a specification.) In
addition, we wiil classify progranmming mistakes into three loose categories: (1)
blunders, (2) numerical oversights, and (3) portability oversights. In spitc of

1



2 Introduction Chap. 1

being vague, overlapping, and incomplete, this classification facilitates later
discussions.”

. The meanings that we will attach to the terms used in these two
categorizations and some related concepts will be explained in this section. In
addition, we will 'describe a class of cossputational experiments that will be
used to investigate the proeess of loontimg simple programming mistakes. The
reader is urged to consider the defimitions carefully but should keep in mind
that our definitions are not standard.

Four Phases of Software Prodmetion. By a specification we mean a
precise and complete statement of the intended relationship between a pro-
gram’s input and its computed output. One of the surprising things about
numerical software is that for many computational problems it is not possible
to determine an appropriate specification, in which case the software must be
developed with only an imprecise idea of what it will actually do. Even when
specifications exist, they may be difficult to determine. (See Exercise 1.)

An algorithm is an outline of the sequence of arithmetic operations that
the software is to perform on “unexceptional” data. Much of the activity of
designing algorithms is conceptual in nature. Often there are mathematical
theorems to be understood and algebraic formulas to be manipulated. The
process of algorithm design may include a theoretical analysis of the algorithm’s
resilience to the use of fixed-precision arithmetic.

The goal of the implementation phase of numerical software development
is to produce a running computer program. Doing 5o involves determining the
calling sequences, the handling of exceptional cases, the use of storage, etc.

For discussing the software development process, let us distinguish three
purposes for running programs on a computer: testing, measuring, and experi-
menting. (We will not attempt to classify uses of the finished software.) A resr
is conducted on a specification and an associated computer program and is
performed by running the program on one or more sets of input data and
checking for conformance of the input and output to the specification. On the
other hand, we will say that a program is being measured if either (1) we have
no specification for input/output behavior or (2) we are checking some aspect
of program performance other than input/output behavior (for instance, we
might be determining efficiency). The act of running a program for the stated
purpose of investigating some aspects of the software engineering process
(rather than to develop a particular program) is an experiment. We will require
that an experiment involve an explicit hypothesis that makes an assertion
about the program development process, just as testing requires a specification.

For example, suppose we were writing sorting programs, that is, pro-
grams to satisfy the Specification of arranging an array of numbers into
ascending order. Running a program to see if it correctly sorts its input would
be considered testing. Seeing which of two programs runs faster on a particular
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set of data would be classified as measuring. We might also formulate the
hypothesis that our approach to testing will catch over 90% of all potential
programming bugs and then conduct an experiment by running a collection of
bug-ridden sorting programs through our testing process and seeing how many
are caught.

Three Kinds of Software Mistakes. A program error is a specifica-
tion-program pair with the property that under certain conditions of input and
execution environment the program’s output does not meet the specification.
Thus the term will not be applicable to a program having no specification. (We
will also speak of the “error” in a number, meaning the difference between an
approximate number and the true value, but it will be easy to distinguish these
two uses.) A mistake is a program construct that should be changed because it
is contrary to the programmer’s intent. Thus an error need not be a mistake
(since it might only signal that the specification is not appropriate), and a
mistake need not be an error (since it might affect efficiency instead of
input /output behavior).

We will classify mistakes according to how they are understood. A
blunder can be explained in terms of an idealized model of computation, e.g.,
one which assumes that arithmetic is exact and that FORTRAN programs are
executed directly by the computer hardware. For instance, we classify the
accident of replacing a + by —, or of writing INTGER instead of INTEGER,
as a blunder. To understand an oversight, cn the other hand, requires a grasp
of certain details of actual computers, for instance, specifics about arithmetic
units or FORTRAN compilers. In particular, a numerical oversight is a mis-
take that hinges on differences between ideal arithmetic and arithmetic as
performed by computers. A portability oversight is a mistake because of
differences, in hardware or software, among computer systems. See Exercises 3
and 4 for examples of portability oversights.

Experiments about Typographical Mistakes. The following changes
to a program statement are defined to be typographical changes:

1. Replace the value of a binary arithmetic operation by one of the

operands
2. Replace one of the arithmetic operators +, —, *, /, or ** by another
3. Replace one of the relational operators =, #, <, <, >, > by
another

4. Add 1 to a constant or subtract 1 from a constant

5. Replace one occurrence of a scalar (i.e., nonsubscripted variable) by
another scalar that appears in the program
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For instance, the following statements can be derived from the
FORTRAN statement

IF (X+Y .6T. 1.0) 2=0.0
by making a typographical change of the indicated type:

Statement Type of Change

IF (X .6T. 1.0) 2=0.0

IF (X-Y .GT. 1.C) 2=0.0
IF (X+Y .LT. 1.0) 2=0.0
IF (X+Y .GT. 2.0) 2=0.0
IF (X+Y .GT. 1.0) X=0.0

L I Y S

A mutant of a given program is another program that can be derived by
making a single typographical change to a statement of the original program.
A mutation experiment is conducted using the following objects:

1. A collection of one or more programs for a certain computational
problem

2. A collection of one or more sets of data for that problem
3. Rules for deciding if a computed solution for that problem is accepiable

The mutation experiment consists of (1) generating all mutants of the given
procedures, (2) executing every mutant on every one of the given sets of data,
and (3) determining which (or how many) mutants “survive.” A mutant is said
to survive the experiment if for each of the given sets of data it (a) performs a
valid computation (does not divide by zero, generate an out-of-bounds sub-
script, reference an undefined variable, etc.) and (b) produces an accepiable
answer. In brief, the survival of a mutant indicates that the given collection of
test data sets is inadequate to distinguish the mutant from the original
program,

The software systemn described in ‘“Mutation Analysis: Ideas, Examples.
Problems and Prospects” by T. Budd (in Sojtware Testing, edited by B.
Chandrasakeran and S. Radicchi, North-Holland, Amsterdam, 1981) akmost
completely automates the process of conducting mutation experiments on
FORTRAN programs. One of the few tasks that must be performed manually
is determuning which of the surviving mutants are equivalent to the original
program, i.e., which of the typographical changes are noi mistakes. {(For
instance, changing an occurrence of > to > might not affect the program’s
quality.) Usually this task s quite simple.

The mutation analysis tooi used in experiments described throughout the
book was originally developed as an aid for a particular approach to systematic
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generation of test data in a production environment. The survival of a mutant
would be taken as indicating a weakness in the test cases-that should be
remedied before the program could be considered well tested. Because of the
cost (in terms of computer resources) of Using this tool, it has not been widely
applied in that context. Here we are using the mutation too! as an experimental
apparatus to explore both the effectiveness of various test data generation
methods and the difficulty of adequately testing various kinds of programs for
various kinds of errors. In this laboratory setting the tool has ptoven to be
invaluable.

EXERCISES
1. Consider the following FORTRAN 77 randem number generator:

FUNCTION RANC)

SAVE K

DATA K/ 100001 /
K=MOD(K+*125,2796203)
RAN = REAL(K) / 2796203.9Q
RETURN

END

[MOD(K » 125,2796203) is the remainder after division of K * 125 by 2796203.]

(a) Show that any value returned by RAN lies between O and 1, given certain
assumptions about the number of bits in a FORTRAN integer.

{b) Does the statement that RAN returns a value between 0 and 1 constitute a
specification in the sense discussed in this section? Explain.

(¢) Give an informal, yet plausible, condition that the sequence of numbeis
generated by

1 PRINT =, RANQ)
GO T0 1

should meet to exhibit “randomness.” Execute RAN {0 see whether it meets
this condition. .

(d) Can you give a specification (that is, a precise and complete statement of
requirements) that a random number generator should satisty? What test would
determine whether or npot RAN is correct in this sense? Sce The Ari of
Computer Programming, Vol. 2: Seminumericai Algorithms, by Donald E. Keuth
(Addison-Wesley, Reading, Mass.. 1981) for a discussion of the subtleties of
random number generators.

(e) Suppose that a mistake is made when typing RAN, causing 100091 to be
replaced by 10001. Would that necessarily be considered an crror in the sense
used herc? ‘
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2. (a) Let P be a program containing p binary arithmetic operations, g occurrences
of relational operators, r occurrences of constants, s occurrences of scalars,
and ¢ distinct scalars. Show that P has 6p + 5¢ + 2r + (¢ — 1)s mutants.

(b) Show that the following program has 185 mutants.

de—b*-4c
ifd>0
e~ yd
e —-b+e
2
‘o ~-b-e
’ 2
else
o =b
L)
v—d
95

3. (Optional) The 1966 FORTRAN standard did not include the SAVE statement,
and FORTRAN compilers differed in the ways they handled DATA statements.
Specifically, in some environments a variable in a DATA statement was reinitial-
ized every time the procedure was entered; in other environments the variable’s
value at a procedure invocation was its value at termination of the preceding
invocation. Discuss the repercussions for the procedure RAN of Exercise 1 with the
SAVE statement removed.

4. (Optional) FORTRAN programs are collections of external subprograms that share
data through procedure arguments or COMMON (that is, global) data areas. Some
FORTRAN compilers handle unsubscripted variables with “call by reference” (i.e.,
by passing the addresses of procedure arguments), while others use “copy-in,
copy-out” (i.e., upon entry to a subprogram, an initial value for the argument is
copied into a temporary location to be used throughout execution of the subpro-
gram; upon return, the final contents of the temporary are copied back into the
actual argument). This difference among FORTRAN compilers results in two
situations where a program’s output depends on the compiler’s implementation.
One case occurs when a variable appears more than once as an actual argument in
a procedure reference, as in CALL THUD(X, X). The other case is when an actual
argument passed to a subprogram is in a COMMON area to which the called
subprogram has access. Give programs that illustrate each of these cases. In each
case, specify a set of data and the differing outputs.

1.2 AN EXAMPLE OF A TEST AND TWO EXPERIMENTS

In this section we will illustrate the notions of specification, algorithm, imple-
mentation, test, hypothesis, error, numerical oversight, experiment, and mutation
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experiment as they arise during development of programs to solve quadratic
equations of the form
x2+bx+c=0

In addition, the following general points about numerical software are il:
lustrated by this example:

1. It may require some effort to determine an appropriate specification.

2. It may be difficult in practice to decide whether the output from a test
with a particular set of input data has adhered to a given specification.

A computer can represent numbers to only a limited precision and in.
general cannot represent the exact solutions of x? + bx + ¢ = 0 even in cases
where b and ¢ are representable. With this limitation in mind, we might
propose Specification 1.1a.

Specification 1.1a
The computed solutions of x2 + bx + ¢ = 0 should agree to within
the computer’s precision with the true solutions.

However, Specification 1.1a is not particularly useful because, as it turns out,
no. program can satisfy it (unless extra precision is used in the computation). It
is more helpful to work with the following specification, which is not the sort
of assertion that one is likely to think of right away:

Specification 1.1b

The computed solutions of x2 + bx + ¢ = 0 should agree to within
the computer’s precision with the true scluticns of x2+ bx + C =0,
where C is some number that agrees with ¢ to within the computer’s
precision. |

Contemplate Specification-1.1b awhile and work Exercise 1. We think that you
will come to agree with point 1 above. '

The mathematical theory that underlics our quadratic equation proce-
dures consists of the following fact:

Theorem 1.1
if b and ¢ are real numbers, then the equation x> + bx + c= 0 is
satisfied by exactly two (possibly identical) numbers, namely

—bte
2
where e = Vd and d = b? — 4c. In particular, if b2 — 4c¢ < 0, then the
two solutions are the complex numbers
ptixaq,
where p= —b/2 g=y-d/2 and i’ = —1,
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This fact immediately suggests Algorithm 1.1a:

Algorithm 1.1a

d e« b? - 4c
ifd>0
e — yd
, . _bte
' 2
;o b-e
2 2
else
- -b
2
n(_\‘_d
o 2

It turns out that Algorithm 1.1a is not as accurate as it should be (see Exercise
1), which illustrates the fact that straightforward embodiment of mathemati-
cally correct formulas often results in a poor computer program.

The following variant of Algorithm 1.1a is correct, in the sense that it
satisfies Specification 1.1b. The modified procedure computes one solution, call
it r,, by a formula that can be guaranteed to be accurate. It follows from basic
algebra that the other solution is ¢/r,. This approach is followed in Algorithm
1.1b.

Implementing Algorithm 1.1b requires, among other things. that a deci-
sion be made about how the calling program is to be notified when the roots
are complex. The quadratic equation solver might always return two complex
numbers, perhaps having imaginary parts equal to zero, or it might always
return two real numbers, p and ¢, and an indication of whether the roots are p
and ¢ or are the complex conjugate pair p + i X ¢.

To rest whether an implementation of Algorithm 1.1b satisfies Specifica-
tion 1.1b, we might generate, by some means., a sequence {(f, c,).
(by, ), ....(b,,c,) of sets of test data. For each set we could apply the
quadratic equation solver and check the specification. But how is this check to
be made? In other words, given a set b, ¢ of data and computed solutions
and r,, how can you tell whether Specification 1.1b is satisfied? Not oniy 1s it
hard to see how this check might be performed in exact arithmetic, but the
check is itself a numerical computation that is subject to the same implementa-
tion annoyances and susceptibility to arithmetic inaccuracies that plaguc
algorithms. Evenr designing a test for Specification 1.1a, which is appreciably
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Algorithm 1.1b

easier to check than is Specification 1.1b, requires some thought (see Exercise
2). Here. as is often the case, the intellectual effort required to produce a
reliable program to check that the computed solution meets the specification
may well equal or exceed that required to understand and implement the
algorithm. ;

Experience indicates that even extensive testing can fail to find program
mistakes caused by use of inexact arithmetic. This observation might lead us to
formulate the following experimental hypothesis:

Hypothesis 1.1a
Errors resulting from numerical oversights in procedures to solve
quadratic equations are hard to uncover through testing.

To conduct an experiment to investigate Hvpothesis 1.1a we might see
how many sets of test data aregneeded (o expose some known numerical
oversights. For instance. we might use any of the following errors:

1. Specification 1.1a and an implementation of Algorithm 1.1a.
2. Specification 1.1a and an implementation of Algorithm 1.1b. or
3. Specification 1.1b and an implementation of Algorithm 1.1a.
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(Remember, we are using the term error in a special way: an error consists of a
specification and a nonconforming program.) Such an experiment differs from
testing because, among other things, it requires the use of known program
errors, so the specifications being investigated necd not be satisfiable and the
quadratic equation solvers being executed need not be candidates for general
use.

Our experiment might repeat the following process for each of the three
errors: Apply the given algorithm to each of 100 “random” sets (b,.¢;),

. {b1g0> C100) Of data and check whether the computed results satisfy the
given specification. If, say, only 1% of the sets of data reveal the error (in the
sense that the corresponding computed solutions do not meet the specification),
then the experiment could be interpreted as supporting Hypothesis 1.1a. (As it
turns out, the problem of solving a quadratic equation is easy enough that a
simple theoretical analysis determines which sets b, ¢ of data can expose these
errors. See Example 1 of Section 2.4 for such a theoretical corroboration of
Hypothesis 1.1a.) :

Many potential programming mistakes in quadratic equation procedures,
especially mistakes that are not related to the use of inexact arithmetic, can be
detected by even the most naive appyoach to program development. The
following specific claim can be sub}w to experimentation.

Hypothesis 1.1b \

To expose almost any typographie# mistake in a quadratic equation
. solver, it is sufficient to apply-the proeedure to one quadratic with

real roots and one quadratic with-complex roots.

A mutation experiment to investigate Hypothesis 1.1b might involve Ma
FORTRAN implementation of Algorithm:1a, (2) the quadratics x2 — Sx + 6
and x? + 4x + 5, and (3) the acceptance extterion that the errors in the two
computed values not exceed 0.0001."This experiment will determine that 8 of
the 185 typographical changes will not be exposed by either set of data. (See
Exercise 2 of the previous section and Exercise 3 , following.) At that point one
has such options as claiming that the experiment supports Hypothesis 1.1b,
reformulating or discarding Hypothesis 1.1k, designing a mutation experiment
with a different pair of quadratics (when you solve Exercise 3, you will see why
using small integers for test data is fiot 4 good idea), etc.

EXERCISES

" 1. Imagine a hypothetical computer that carries six digits of precision, Thus, if the

computer attempts to add 1.23456 and 0.131111, the best it can do is to produce

. 1.34567 since it cannot represent 1.345671. Numbers are represented in “scientific
notation,” e.g., 10° X 0.123456 or “#¥0~* x 0111111, so the restriction to six
digits of precision does not limit the wize of the numbers that can be computed.



