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Preface

The mysteries of the human mind have fascinated scientists and philosophers
alike for centuries. Descartes identified our ability to think as the foundation
stone of ontological philosophy. Others have taken the human mind as evidence
of the existence of supernatural powers, or even of God. Serious scientific in-
vestigation, which began about half a century ago, has partially answered some
of the simpler questions (such as how the brain processes visual information),
but has barely touched upon the deeper ones concerned with the nature of
consciousness and the possible existence of mental features transcending the
biological substance of the brain, often encapsulated in the concept “soul”.

Besides the physiological and philosophical approaches to these questions,
so impressively presented and contrasted in the recent book by Popper and Ec-
cles [Po77], studies of formal networks composed of binary-valued information-
‘processing units, highly abstracted versions of biological neurons, either by
mathematical analysis or by computer simulation, have emerged as a third
route towards a better understanding of the brain, and possibly of the human
mind. Long remaining — with the exception of a brief period in the early 1960s
— a rather obscure research interest of a small group of dedicated scientists
scattered around the world, neural-network research has recently sprung into
the limelight as a “fashionable” research field. Much of this surge of attention
results, not from interest in neural networks as models of the brain, but rather
from their promise to provide solutions to technical problems of “artificial in-
telligence” that the traditional, logic-based approach did not yield.

The quick rise to celebrity (and the accompanying struggle for funding and
fame) has also led to the emergence of a considerable amount of exaggeration
of the virtues of present neural-network models. Even in the most successful
areas of application of neural networks, i.e. content-addressable (associative)
memory and pattern recognition, relatively little has been learned which would .
look new to experts in the various fields. The really hard problem, viz. position-
and distortion-invariant recognition of patterns, has not yet been solved by
neural networks in a satisfactory way, although we all know from experience
that our brains can do it. In fact, it is difficult to pinpoint any technical problem
where neural networks have been shown to yield solutions that are superior to
those previously known. The standard argument, that neural networks can do
anything a traditional computer can, but do not need to be programmed, does
not weigh too strongly. A great deal of thought must go into the design of the
network architecture and training strategy appropriate for a specific problem,
but little experience and few rules are there to help.



VI Preface

Then why, the reader may ask, have we as nonexperts taken the trouble to
write this book and the computer programs on the disk? One motivation, quite
honestly, was our own curiosity. We wanted to see for ourselves what artificial
neural networks can do, what their merits are and what their failures. Not
having done active research in the field, we have no claim to fame. Whether
our lack of prejudice outweighs our lack of experience, and maybe expertise,
the reader must judge for herself (or himself).

The other, deeper reason is our firm belief that neural networks are, and
will continue to be, an indispensable tool in the quest for understanding the
human brain and mind. When the reader feels that this aspect has not received
its due attention in our book, we would not hesitate to agree. However, we
felt that we should focus more on the presentation of physical concepts and
mathematical techniques that have been found to be useful in neural-network
studies. Knowledge of proven tools and methods is basic to progress in a field
that still has more questions to discover than it has learned to ask, let alone
answer.

To those who disagree (we know some), and to the experts who know ev-
erything much better, we apologize. The remaining readers, if there are any,
are invited to play with our computer programs, hopefully capturing some of
the joy we had while devising them. We hope that some of them may find this
book interesting and stimulating, and we would feel satisfied if someone is in-
spired by our presentation to think more deeply about the important problems
concerning the mind and brain.

This book developed out of a course on neural-network models with com-
puter demonstrations that we taught to physics students at the J.W. Goethe
University in the winter semester 1988/89. The interest in the lecture notes
accompanying the course, and the kind encouragement of Dr. H.-U. Daniel of
Springer-Verlag, have provided the motivation to put it into a form suitable
for publication. In line with its origin, the present monograph addresses an
audience mainly of physicists, but we have attempted to limit the “hard-core”
physics sections to those contained in Part II, which readers without an ed-
ucation in theoretical physics may wish to skip. We have also attempted to
make the explanations of the computer programs contained on the enclosed
disk self-contained, so that readers mainly interested in “playing” with neural
networks can proceed directly to Part III.

References to the demonstration programs are indicated in
the main text by this “PC logo”. We encourage all readers
to do the exercises and play with these programs.

vvvvvv

Durham and Frankfurt Berndt Miller
July 1990 Joachim Reinhardt
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Part 1

Models of Neural Networks



1. The Structure
of the Central Nervous System

1.1 The Neuron

Although the human central nervous system has been studied by medical doc-
tors ever since the late Middle Ages, its detailed structure began to be unraveled
only a century ago. In the second half of the nineteenth century two schools
contended for scientific prevalence: the reticularists claimed that the nervous
system formed a continuous, uninterrupted network of nerve fibres, whereas
the neuronists asserted that this neural network is composed of a vast number
of single, interconnected cellular units, the neurons. As often in the course of
science, the struggle between these two doctrines was decided by the advent
of a new technique, invented by Camillo Golgi around 1880, for the staining
of nerve fibres by means of a bichromate silver reaction. This technique was
ingeniously applied by the Spanish doctor Santiago Ramon y Cajal in 1888
to disprove the doctrine of reticularism by exhibiting the tiny gaps between
individual neurons. The modern science of the human central nervous system
thus has just celebrated its first centennial!*

Dendrite
Axon
Axon
T
Synaptic
junction i Cell body

Fig. 1.1. Structure of a typical neuron (schematic).

The detailed investigation of the internal structure of neural cells, especially
after the invention of the electron microscope some 50 years ago, has revealed
that all neurons are constructed from the same basic parts, independent of
their size and shape (see Fig. 1.1): The bulbous central part is called the cell
body or soma ; from it project several root-like extensions, the dendrites, as
well as a single tubular fibre, the azon, which ramifies at its end into a number
of small branches. The size of the soma of a typical neuron is about 10-80 um,
while dendrites and axons have a diameter of a few pm. While the dendrites

! Golgi and Ramon y Cajal shared the 1906 Nobel prize in medicine for their discoveries.
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serve as receptors for signals from adjacent neurons, the axon’s purpose is the
transmission of the generated neural activity to other nerve cells or to muscle
fibres. In the first case the term tnterneuron is often used, whereas the neuron is
called a motor neuron in the latter case. A third type of neuron, which receives
information from muscles or sensory organs, such as the eye or ear, is called a
receplor neuron.

The joint between the end of an axonic branch, which assumes a plate-like
shape, and another neuron or muscle is called a synapse. At the synapse the
two cells are separated by a tiny gap only about 200 nm wide (the synaptic
gap or cleft), barely visible to Ramon y Cajal, but easily revealed by modern
techniques. Structures are spoken of in relation to the synapse as presynaptic
and postsynaptic, e.g. postsynaptic neuron. The synapses may be located either
directly at the cell body, or at the dendrites, of the subsequent neuron, their
strength of influence generally diminishing with increasing distance from the
cell body. The total length of neurons shows great variations: from 0.01 mm for
interneurons in the human brain up to 1 m for neurons in the limbs.

Nervous signals are transmitted either electrically or chemically. Electrical
transmission prevails in the interior of a neuron, whereas chemical mechanisms
operate between different neurons, i.e. at the synapses. Electrical transmission?
is based on an electrical discharge which starts at the cell body and then travels
down the axon to the various synaptic connections. In the state of inactivity,
the interior of the neuron, the protoplasm, is negatively charged against the
surrounding neural liquid. This resting potential of about —70 mV is supported
by the action of the cell membrane, which is impenetrable for Nat ions, causing
a deficiency of positive ions in the protoplasm (see Fig. 1.2).

. +
M___MembruneIJOmV N__u___—_
E/Pl'otoplusm 22 (K*)
s ] —_—

Signals arriving from the synaptic connections result in a transient weaken-
ing, or depolarization, of the resting potential. When this is reduced below —60
mV, the membrane suddenly loses its impermeability against Nat ions, which
enter into the protoplasm and neutralize the potential difference, as illustrated
in the left part of Fig. 1.3. This discharge may be so violent that the interior of
the neuron even acquires a slightly positive potential against its surroundings.
The membrane then gradually recovers its original properties and regenerates
the resting potential over a period of several milliseconds. During this recovery
period the neuron remains incapable of further excitation. When the recovery
is completed, the neuron is in its resting state and can “fire” again.

The discharge, which initially occurs in the cell body, then propagates along
the axon to the synapses (see Fig. 1.3, right part). Because the depolarized

Fig. 1.2. Structure of an axon.

2 Detailed studies of the mechanisms underlying electrical signal transmission in the nervous
system were pioneered by Sir John Eccles, Alan Lloyd Hodgkin, and Andrew Huxley, who
were jointly awarded the 1963 Nobel prize in medicine.
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Fig.1.3. Temporal sequence of activity spikes of a neuron (left), which travel along the axon as
depolarization waves (right).

X

parts of the neuron are in a state of recovery and cannot immediately become
active again, the pulse of electrical activity always propagates in one direction:
away from the cell body. Since the discharge of each new segment of the axon
is always complete, the intensity of the transmitted signal does not decay as
it propagates along the nerve fibre. One might be tempted to conclude that
signal transmission in the nervous system is of a digital nature: a neuron is
either fully active, or it is inactive. However, this conclusion would be wrong,
because the intensity of a nervous signal is coded in the frequency of succession
of the invariant pulses of activity, which can range from about 1 to 100 per
second (see Fig. 1.4). The interval between two electrical spikes can take any
value (longer than the regeneration period), and the combination of analog
and digital signal processing is utilized to obtain optimal quality, security, and
simplicity of data transmission.

o LLELLNE RO LD LLLLLE LD UL O A MG A )

A
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Fig.1.4. Neuron as pulse-coded analog device: spike trains of some typical neural transmission
patterns. The microstructure of the successive intervals is increasingly important from top to
bottom (A-D), indicating messages of growing complexity (from [Bu77}).

The speed of propagation of the discharge signal along the nerve fibre also
varies greatly. In the cells of the human brain the signal travels with a veloc-
ity of about 0.5-2m/s. While this allows any two brain cells to communicate
within 2040 ms, which is something like a temporal quantum in the operation
of the human central nervous system, it would cause unacceptably long reac-
tion times for peripheral neurons connecting brain and limbs: a person would
hit the ground before even knowing that he had stumbled. To increase the
speed of propagation, the axons for such neurons are composed of individual
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segments that are covered by an electrically insulating myelin sheath, which is
interrupted from time to time at the so-called Ranvier nodes. The presence of
an insulating cover causes the signal to propagate along the axon as in a wave
guide from one Ranvier node to the next, triggering almost instantaneous dis-
charge within the whole myelinated segment. This mode of propagation, called
saltatory conduction, allows for transmission velocities of up to 100 m/s.

The discharge signal traveling along the axon comes to a halt at the syn-
apses, because there exists no conducting bridge to the next neuron or muscle
fibre. Transmission of the signal across the synaptic gap is mostly effected
by chemical mechanisms. Direct electrical transmission is also known to oc-
cur in rare cases, but is of less interest here in view of the much lower degree
of adjustability of this type of synapse. In chemical transmission, when the
spike signal arrives at the presynaptic nerve terminal, special substances called
neurotransmitters are liberated in tiny amounts from vesicles contained in the
endplate (e.g. about 10717 mol acetylcholin per impulse). The transmitter re-
lease appears to be triggered by the influx of Ca*™ ions into the presynaptic
axon during the depolarization caused by the flow of Nat ions. The neuro-
transmitter molecules travel across the synaptic cleft, as shown in Fig. 1.5,
reaching the postsynaptic neuron (or muscle fibre) within about 0.5ms. Upon
their arrival at special receptors these substances modify the conductance of
the postsynaptic membrane for certain ions (Nat, K+, Cl™, etc.), which then
flow in or out of the neuron, causing a polarization or depolarization of the
local postsynaptic potential. After their action the transmitter molecules are
quickly broken up by enzymes into pieces, which are less potent in changing
the ionic conductance of the membrane.

If the induced polarization potential §U is positive, i.e. if the total strength
of the resting potential is reduced, the synapse is termed ezcitatory, because
the influence of the synapse tends to activate the postsynaptic neuron. If §U is
negative, the synapse is called inhibstory, since it counteracts excitation of the
neuron. Inhibitory synapses often terminate at the presynaptic plates of other
axons, inhibiting their ability to send neurotransmitters across the synaptic
gap. In this case one speaks of presynaptic inhibition (see Fig. 1.6). There is
evidence that all the synaptic endings of an axon are either of an excitatory
or an inhibitory nature (Dale’s law),® and that there are significant structural
differences between those two types of synapses (e.g. the conductance for Na*t
and Kt changes at excitatory synapses, that for Cl~ at inhibitory synapses).

Under which condition is the postsynaptic neuron stimulated to become
active? Although, in principle, a single synapse can inspire a neuron to “fire”,
this is rarely so, especially if the synapse is located at the outer end of a
dendrite. Just as each axon sends synapses to the dendrites and bodies of a
number of downstream neurons, so is each neuron connected to many upstream
neurons which transmit their signals to it. The body of a neuron acts as a kind
of “summing” device which adds the depolarizing effects of its various input

3 Gir Henry Dale shared the 1936 Nobel prize in medicine with Otto Loewi, who discovered
the chemical transmission of nerve signals at the synapse.



