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PREFACE

Although the finite element method originated in structural mechanics,
its roots belong in mathematics since it is a particular class of approxima-
tion procedure. In this book, the finite element method is presented
not as it developed historically but within the framework of a general
taxonomy.

In the opening chapter, the formulation and classification of physical
problems is considered. This is followed by a review of field or con-
tinuum problems and their approximate solutions by the method of
trial functions. It is shown that the finite element method is a subclass
of the method of trial functions, and further, that a finite element formula-
tion can, in principle, be developed for most trial function procedures.
Variational and residual trial function methods are considered in some
detail and their convergence is examined. After a review of the calculus
of variations, both in classical and Hilbert space form, the fundamentals
of the finite element method are introduced. A classification is also
presented for the various categories of the finite element method.
Convergence is investigated at some length. To illustrate the variational
approach, the Ritz finite element method is then outlined, both for an
equilibrium problem using the classical calculus of variations and for
equilibrium and eigenvalue problems using the Hilbert space approach.
The application of the finite element method to solid and structural
mechanics follows, although no attempt has been made to provide
other than a basic introduction to these areas since excellent coverage is
available in standard texts. Applications to other physical problems are
considered in the chapters pertaining to the Laplace, Helmholtz, wave,
and diffusion equations, as well as in succeeding chapters. An extensive
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xii ' PREFACE

list of additional references is also given. The aim of this book has been to
demonstrate the generality of the finite element method by providing
a unified treatment of fundamentals and a broad coverage of applications.

An advanced knowledge of mathematics is not required for this book,
since only a reasonable acquaintance with differential and integral
calculus has been presupposed. Matrix algebra and calculus are used
extensively, and are reviewed in the appendices for those unfamiliar
with these subjects. In Chapters 4 and 7, concepts from functional
analysis are introduced. While the Hilbert space approach given in these
sections allows a powerful generalization of variational and finite element
-methods which should not be overlooked, these chapters can be omitted
en a first reading.

By appropriate selection of chapters, this book may be found suitable
for undergraduate and graduate courses. The authors intended it to
appeal not only to engineers and others concerned with practical
applications, but also to scientists and applied mathematicians.
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CHAPTER

1

THE FORMULATION OF PHYSICAL PROBLEMS

1.1 INTRODUCTION

The concern of the engineer, the scientist, and the applied mathe-
matician is with physical phenomena, although from different points of
view. To define and solve a physical problem, the state or configuration
of the phenomenon must be described at one or more times. The entirety
of the phenomena being considered constitutes the system, and its state
is described by the physical quantities by which it is manifested. In 4 given
problem, some of these quantities may be prescribed or otherwise fixed,
while others are unknown or variable and constitute the wvariables or
parameters of the problem. That set of variables which is the minimum
number needed to reference (or to determine) the state of the system
completely is known as the set of independent variables. All other variables
describing the system will be dependent on this set, and are thus
dependent variables. In many systems, there are specified or physically
imposed conditions known as constraints which reduce the number of
independent variables from that which would otherwise be required.
For example, a rotating flywheel is constrained by its bearings so that
there are only two independent variables in this system (e.g., the angle
from the initial position and time).

1



2 1 THE FORMULATION OF PHYSICAL PROBLEMS

If time, when present, is deleted from a set of physical quantities, the
remainder are called a set of gemeralized coordinates of the system.
In any physical system, the maximum number of independent generalized
coordinates (i.e., those that can be varied arbitrarily and independently
without violating any of the constraints) is known as the number of degrees
of freedom of the system.

A holonomic system can always be described by a set of generalized
" coordinates that are independent. A nonholonomic system requires a set of
generalized coordinates not all of which are independent, being related by
equations of constraint. In either case, time, if present, must also be added,
to complete the description. The number of degrees of freedom is always
that number of generalized coordinates that can be regarded as indepen-
dent, being the full number of coordinates in the case of a holonomic
system, and the full number minus the number of constraint equations
if the system is nonholonomic [1-4]. If the constraints are implicitly
taken into account in the formulation of the problem, there is no need
for the separate equations of constraint, and what would otherwise be a
nonholonomic problem becomes a holonomic one. 3

If a problem involves a system of discrete interconnected elements,
then the phenomenon may be described by a finite number of degrees
of freedom, whereas the description of a phenomenon in a continuum
requires a knowledge of quantities at every point so that a continuum
problem ‘has an infinite number of degrees of freedom. The former is
known as a discrete (or lumped-parameter) system, while the latter is a
continuous system. Primarily this book considers problems of the con-
tinuous type (often called field problems),although in the latter part of
Chapter 8 a discrete system of interconnected structural members is
considered. Continuous problems are often.approximated as discrete
problems, and it will be shown that the finite element method is a means of
accomplishing this transformation and solving the resulting set of
equations.

1.2 CLASSIFICATION OF PHYSICAL PROBLEMS

Most problems in engineering, physics, and applied mathematics can
be classified as either discrete or continuous. A discrete system consists
of a finite number of interconnected elements, whereas a continuous
system involves a phenomenon over a continuous region. Several masses
interconnected by a system of springs is an example of the former, and
heat conduction in a block an example of the latter. It should be noted
here in connection with a discrete system, that the term variable is used



1.3 CLASSIFICATION OF THE EQUATIONS OF A SYSTEM 3

in a singular sense to mean a separate quantity (e.g., the Cartesian
coordinates x,, x, of two masses would each be a variable). In a
continuous system, variable is used in a plural sense to mean any one of
an allowable set of similar quantities (e.g., the variable x might be used
for the x Cartesian coordinate of each one of the points in the region
considered) The variable time is an exception in discrete systems, where
it is normally used in the plural sense.

Discrete and continuous systems can each be further subdivided into
equilibrium, eigenvalue, and propagation problems:

a. Equilibrium problems are those in which the system state remains
constant with time, and are often known as steady-state problems.
Examples are the statics of structures, steady compressible flow,
stationary electrostatic.-fields, and steady voltage distributions in
networks.

b. Eigenvalue problems can be considered as extensions of equilibrium
problems in which, in addition to the corresponding steady-state
configuration, specific or critical values of certain other parameters must
be determined as well. Examples in this category include the buckling and
stability of structures, natural frequency problems in mechanical systems,
and the determir.ation of resonances in electrical circuits.

c. Propagation  problems include transient and unsteady-state
phenomena, anc. are those in which a subsequent state of the system has
to be related to an initially known state. Stress waves in elastic continua,
the development of self-excited vibrations, and unsteady heat conduction
are examples of propagation problems.

1.3 CLASSIFICATION OF THE EQUATIONS OF A SYSTEM

In a physical problem, whether discrete or continuous, the state of the
system can be described by variables, of which a set x;,x;,..., %,
(collectively represented by x. ;) is independent and a set u;, 4y ..., Uy,
(collectlvely represenied by u) is dependent. The region of the system
is defined by the sets of all possible values that the x; can have. A
particular set of allowable values of x; defines a point in the region. If
at a point {with the remaining mdepcndent variables held constant), one
of the x; can either be increased or decreased to another allowable valie,
the pomt is said to be in the interior of the regxon If the variable can be
decreased to another allowable value but an increase gives a value outside
the prescribed range, or vice versa, then the point is on the boundary
of the region. If the boundary points are deleted from the region, the
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remaining (interiar) points constitute the domain. Sometimes there is no
(upper and/or lower) bound on one or more of the independent variables,
and in this case the boundary is said to be open with respect to that
variable. When all the independent variables are bounded, the boundary
is closed. In some cases, the region is internally subdivided by interior
boundaries.

From physical laws (and often also from prescribed conditions),
various relationships will be deducible in the domain & between the
dependent and independent variables, and the domain or field equations
will thus be.one or more equations of the form

To(y , g yeeey Uy 5 Xq 4 Xp yeney %) = O in 2. (1.1)

“In addition, there will be one or more equations (the boundary conditions)
applying over the bounding surface &, of the form

Forty s Uy ey U 5 Xy, Xg ey %) = 0 in . (1.2)

Equations (1.1) and (1.2) are the governing equations or governing
relations of the system. It is to be understood in Egs. (1.1) and (1.2)
that not every variable need occur in each equation, and that the functions
fo and fy include algebraic, differential, and integral operations on the
variables. In general, the u; occurring in Egs. (1.1) and (1.2) will not be
the full set of all possible dependent variables, but some subset of these.
The variables #; and x; need not be restricted to scalars, but can be
vectors or matrices.

In discrete or lumped-parameter systems [5], some or all of the
independent variables are often set equal to constants. In the latter case,
the“region collapses to a point and there is no boundary and hence no
boundary conditions. For example, in the equilibrium problem of a mass
hanging on a spring, the independent variables (mass and characteristic
spring rate) are set equal to constants and the dependent variable (the
position of the mass) is then determined from the (condensed) domain
equation.

A problem will be considered to be well behaved! if there are sufficient
equations (1.1) and (1.2) so that solutions for those u; occurring in
Egs. (1.1) and (1.2) not only exist but are also unique. Explicit solutions
of the u; will be sought of the general form

u; = f(%y, Xy yeery Xp)- (1.3)

t See Crandgll [5]; also the concept of well posed in Ames [6], Hadamard [7], and Courant
and Hilbert [8].
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It will be noted that the definition of domain used in this section
agrees with that of set and function theory, where the domain of a function
is the set on which the function is defined, and the range or image is the
set of values assumed by the function. For the function fi(x, , %, ,..., x,,)
on the right-hand side of Eq. (1.3) (which is valid for the interior of
‘the region), the domain in the mathematical sense can consist of all
allowable values of x, , «, ,..., ¥, , which agrees with the earlier definition.
Since the domain of the function fi(x, , x, ,..., x,) relates to the solution
u; , it is sometimes called the solution domain of the problem.

The various classes of problem discussed earlier (discrete, continuous,
equilibrium, eigenvalue, propagation) have the different types ‘of
governing equations (1.1) and (1.2) shown in Table 1.1. It should be noted
when using this table that simultaneous means to be considered simul-
taneously and can refer to sets of nonlinear as well as linear equations.
_ Initial conditions are domain conditions that are specified at an initial
time. ,

It will be seen from Table 1.1 that equation sets for discrete systems are
simpler to deal with than those for continuous systems. Many of the
approximate methods of solution for continuous systems reduce the
number of degrees of freedom of the system from infinity to a finite
number, and thus reduce the problem to the simpler one of a discrete
system. The finite element method is one such approximation method.

TABLE 1.1

Relationships between Problem Types and Corresponding Sets of Governing Equations

Governing equations of the problem

Problem clasSiﬁcation

Discrete

Continuous

Equilibrium (Simultaneous) algebraic Ordinary or partial differen-

equations tial equations with closed
boundary conditions

Eigenvalue (Simultaneous) algebraic Ordinary or partial differen-
equations or ordinary tial equations with closed
differential equations re- boundary conditions
ducible to algebraic equa-
tions

Propagation (Simultaneous) ordinary dif- Partial differential equations
ferential equations with with prescribed initial con-
prescribed ditions and open boundary

initial condi-
tions :

conditiohs
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