Kris Jamsa

s

The C Library

s

Kris Jamsa

Osborne McGraw-Hill
Berkeley, California

Published by

Osborne MeGraw-Hill -

2600 Tenth Street "
Berkeley, California 94710

US.A.

For information on translations and book-.
distributors outside of the U.S.A,, please write to
Osborne/McGraw-Hill at the above address.

MS-DOS is a registered trademark of Microsoft Corporation
UNIX is a trademark of Bell Laboratories.

THE C LIBRARY)

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the Copy-
right Act of 1976, no part of this publication- may be reproduced or
distributed in any form or by any means, or stored in a data base or
retrieval system, without the prior written permission of the pub-
lisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be repro-
duced for publication,

1234567890 DODO 898765
ISBN 0-07-881110-4

Jon Erickson, Acquisitions Editor
Raymond Lauzzana, Technical Editor
Fran Haselsteiner, Copy Editor
Deborah Wilson, Composition
Jan Benes, Text Design

Yashi Okita, Cover Design

Introduction

Every day each of us uses a device of some type to make life easier.
-Man has always been a toolmaker and the computer may very likely
become man’s most powerful tool. Whether we are fixing a car or.
appendlng one file to another, a tool is somethlng that.makes our job
easier. The purpose of this text is to provide several tools that you
can use in the development of C pregrams.
Over the past few years, the C programming language has grown
a great deal in popularity: Although C was originally developed as a
systems programming language, the attributes that make C desir-
. able for systems programs are causing many programmers to real-
.-jze C's potential in many general-purpose. applications. These attri-
“butes inc¢lude portability, modifiability, and access to operations that
are normally confined to assembly language programming.
" In the past, when we wanted to take a program that was written
and running on one type of computer and then move it to a different
type of compuiter; a great deal of the program had to be rewritten. A

vit

viii THE C LIBRARY

major design goal for the implementation of C was to break through
this machine dependence. Because of this, C became one of the most
portable languages in existence today. A program written in C for
one type of computer, such as the IBM PC, will normally run on a
second type of computer, such as an APPLE, with little or no
modification.

One goal of any programmer is to break a large task into several
smaller and more easily implemented tasks. Many programs that at
first appear to be large unsolvable tasks can often be broken down
into. several smaller subtasks that are easier to design and code.
Another major advantage of breaking a program into several func-
tions is that the functions created for one program can often be used
again in an unrelated application with little or no modification. If -
we implement most of our program with functions, we increase the
readability of the code and decrease the development and testing
time of the program. In addition, we create a series of routines that
can be placed into a library and shared by other programs. Our goal
is to develop functions that perform only one task. In so doing, we
will increase the reuseability of our routines.

A Word on UNIX

In the early seventies, Bell Laboratories introduced the UNIX oper- _
ating system. Because of its tremendous flexibility and the develop-
ment tools it provides to the user, UNIX has increased in popularity
over the past decade. UNIX is well on its way to becoming the
industry-wide standard operating system, and because most code
used in the UNIX operating system is written in C, the number of
applications developed in C and the demand for C programmers will
increase for some time to come.

How to Use This Book

ThlS text assumes that you are already famlhar with or in the pro-
cess of learning C. Whileé Chapter 1 provides a brief language over-
view, it is not intended to be a tutorial on the C programming lan-
guage. If you are just learning C, many of the routines provided in

INTRODUCTION ix

this text can be used just as they are written to help you develop
powerful programs in minimal time. In addition, by examining the
routines along with the documentation provided, you will learn a lot
more. If you are an advanced C programmer, many of the routines
in this text will introduce you to the concepts employed in creating
good programming tools, along with an appreciation of the consid-
erations required to develop utility programs similar to those sup-
ported by the UNIX operating system. If you are not currently run-
ning under UNIX, you can create an environment similar to UNIX
by implementing the routines provided at the end of this text.

The most powerful tool at your disposal is the debug write state-
ment. While the routines provided in this text include detailed
explanations, the only way to thoroughly understand a routine is tc
use it. I strongly recommend that you use debug write statements
within each routine to increase your understanding of the processing.

Each chapter of this text will introduce a new topic and build
upon concepts previously introduced in the text. Chapter 1 provides
a brief overview of the C programming language. It is not intended
as a tutorial on C but as a quick reference guide. Chapter 2 intro-
duces constants and macros. The constants and macros provided in this
chapter are used by the routines in the later chapters and have been.
placed in the files defn.h, math.h, and strings.h, which should be
included in all programs that access the constants or macros. The
content of each of these files is provided in Chapter 2. Chapter 3
provides several string manipulation routines. Chapter 4 examines
~ pointers and their use in string manipulation. Chapter 5 centers
upon the user interface and the development of good I/0 routines.
Chapter 6 presents several array manipulation routines that are
developed for the generic array__type, which allows each routine to
be used for applications requiring arrays of int, float, or double.
Chapter 7 examines recursion and how it can be used to simplify
difficult programming tasks. Each recursive routine is explained in
great detail. Chapter 8 introduces sorting —in particular, the bub-
ble, Shell, and quick sort algorithms. Again, the routines have been
developed in a generic manner that allows arrays of type int, float,
or double; in addition, a change in the sorting order (ascending or
descending) does not require duplicate routines. Chapter 9 provides
a series of routines that perform the trigonometric functions and
character conversion. In Chapter 10 we will demonstrate the tools
developed in Chapters 2 through 9 as we introduce a series of file
manipulation routines that are similar to the utilities provided in a

X THE C LIBRARY

UNIX environment. Chapter 11 introduces the UNIX pipe and how
to develop routines to support it.

The additional effort you spend now developing routinns that can
be shared by other programs will save you many times the time and
effort in the future. ’

Routines included in this book, as-well as other useful routines,
are available from the author for $29.95, plus $2.50 shipping and
handling. The routines are provided on a 5 1/4-inch floppy disk in
MS-DOS format. Write to: : :

Kris Jamsa Software, Inc.
Box 26031
Las Vegas, NV 89126

Contents

-

Chapter-1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

Chapter 10
Chapter 11
~ Appendix A

Introduction

Language Ove'rmew

Constants and Macros

String Manipulation

Pointers

Input/Output Routines .
Array Manipulation Routines
Recursion

Sorting Routines

Trigonometric Functions and
Character Conversion

File Manipulation Programs
Programming the Pipe
ASCII Codes

Index

43
59
81
91
113
127
145

167

191
263
285
289

P s

- Language Overview

This chapter is intended to serve as a quick reference as you"
examine the routines presented in the remainder of the book. In

. addition to providing a language overview, this chapter introduces

Pointers

syntax charts, their interpretation, and their use in developing pro-
grams in C. Don’t worry if you are not familiar with syntax
charts: by the end of this chapter you should appreciate the level of
information provided in a syntax chart, along with the simplicity of

" its interpretation.

and Addresses

Most of the routines provided in this text will utilize pointers to
memory locations. Many programmers have a difficult time with
pointers for several reasons. Firs , some programming languages do

1

2 THE C LIBRARY

not allow the use of pointers. Second, many programmers avoid
using pointers since they do not feel comfortable with their manipu-
lation, which only serves to compound the problem. Third, most
texts do not explain pointers adequately. Therefore, before dddress-
ing the use of pointers in C, let’s take a few steps back and review
several concepts that are crucial to understanding pointers. ‘

The basic purpose of pointers is to identify. memory locations.
Since memory is divided into many locations, each of which is capa-
ble of storing information, you need a method of placing a value into
a specific location in memory and later retrieving the value. The
way this is done is by assigning each memory location a unique
address. If, for example; you place a value into the memory location
whose address is 1000, you can later retrieve the data since you know
where it is located. However, if you had to keep track of memory
loeations by their actual addresses, your programs would be difficult
if not impossible to understand. Instead, programming languages
allow. you to store data in variables. A variable can be viewed as
nothing mere than a meamngful name you assign to a location or
series of locations in memiory. A vhriable, therefore, -has two values
associated with it. The first is the value you assjgn to the variable.
The second is the address, or memory location, the value is contamed
in,

A pomter isa varlable that contains-a: {hemory address InC you
use the symbols & and * when utllxzmg pointers. The ampersand (&) - -
is'used to specify the addresq of a variable, not the value it coritains.
For example, if you have previously declared the varlable my .data
as type int and the pomter‘ mt._pomter, you can assign int__
pomter ‘the address of the varrable my__data in’ memory as follows

int 'my_dsta; - . /¥ declare the variable */
int -*+int pointer, ' 1/* declare .the pointer %/
int pointer &my data, ('I* assign the address */

" Once int_pointer is assigned the address of my_data, both
variables referenpe the same loeation memory. The asterisk (*) is
used to retpevq the value contained at the location referenced by a
pointer. The expression *int__pointer references the value eon-
tained at the address contained in int_— pointer. ‘

If you have declaved the pointer strmg' as a pointer to the strmg_
"Computer”, the actual value contained in the variable, string, is
the address of the first character in the string (C). If you print the .
value contained in string, the address of the letter C in memory will
be displayed. If you want to print the actual letter, you must use the

LANGUAGE OVERVIEW 8
" asterisk as follows:

putchar(*string)!

If you want to print the entlre strmg. you can print the chara.cter
contained at the location contained in the variable string and then

increment the value in string ao that it pomts to the next character
as follows:

while (#string != ‘\0’)
putchar(*string++),

The poatfix ‘expression "string~++ writes the character contained in
- the memory location referenced by string, and then increments
string to point to the next location in memory.

The best way to understand pointers is'to use them. Chapter 4
presents several routines that utilize pointers to character strings.
Experiment with these routines and see if you get the results ‘you
antlclpated The use of debug write statements within each of these
roytines is strongly reeommended If you print the address con-

‘{ained in the pointer, along with the value it references, pointer
- manipulation should become much more understandable.

w -
W

Syntaw Charts

Before you examine the syntax eharts you should become familiar

" with the followmg words: ‘
An expression is a symbol or . serles of symbols that expresses a

mathermatical operation. The followmg are valid expressions in C:

‘a=b+ 1 ,

a : is the same as the expression a = a + 0
ora=a—0

at+ <= 17

~ An identifier is a unigue name that identifies an object. A vari-
_able name is an example of an identifier.
A literal is a constant value. In the syntax charts later in this
chapter, literals are normally the reserved words and punctuation
- that appear in C.

4 THE C LIBRARY

Syntax charts are read from left to right, in the direction of the
arrows that connect the symbols contained in the chart. Since syntax
charts are composed of symbols, you can normally understand the
syntax charts of a language although you may have never pro-
grammed in it. Many experienced computer scientists use syntax
charts rather than trying to memorize the syntax for the constructs
they don’t use on a day-to-day basis. Unfortunately, most of us are
never properly introduced to syntax charts. Once you understand

~ the flow of a syntax chart, it provides a very useful tool.

The symbols in Table 1-1 are used in C syntax charts.

Consider the following example:

#define MAX_STRING 255
. constant expression
identifier ™1 operand »

1If you start with the first item in the syntax chart and follow the
direction of the arrows, the syntax chart provndes the following
information:

‘ constant
i identifier

—® MAX__.STRING

expression

_ operand - 255

“The first two symbols in the chart are fau-ly stralghtforward
The third symbol, expression operand, requires additional explana-
tion. The rectangle surrounding the words expression operand
informs you that expression operand is defined in terms of another

LANGUAGE OVERVIEW §

Table'1-j. Symbols Used in Syntax Charts

‘ ' The oval symbol contains a literal value
) S ‘ that is placed within a program just as it is
: written.

- Examples:
() -
: “ The circle symbol contams 8 literal value
' : normally used for specngl symbols and’
punctuatlon :

Ex_nmples: - :

- The rectangle symbol contains a construct
defined by another syntax chart.

: Ethples:
) while o
identifier loop statement

syntax chart. If you examine the syntax chart for an expression ope- -
rand, you w111 fmd that 1t can be any one of the following:

8 THE C LIBRARY

Las name ‘ -
numeric
BEEEEE—— g
> constant
character
> constant —
string
' EEEEEEEE———
> constant
> array
E——
element
> function
call ——
. +
“—>®-——-> expression _>@__4
member . :
—-——-—-ﬂ-ﬁ—a—-u.-—’
> address
character
> string -

In this case the expression operand is the numeric constant 255.
Consider the following while loop

while (i <= 10)
it

If you examine the syntax chart for the Wil loop,

LANGUAGE OVERVIEW 7

expression »—»@—b statement |9

the literals while, (, and) are again straightforward. The expres-
sion in this case is i <= 10 and the statement is i++;.

If the syntax chart contains more than one possible path, you
" must select the appropriate path and continue to follow the direction
of the arrows. For example, if you want to include the file stdio.h,
the syntax chart for the #include statement provides the following
information:

file
identifier

o file
identifier

If you already know how the operating system treats files con-
tained with quotes and brackets <>, the syntax chart will provide
_the correct syntax; otherwise you must examine the reference gulde '
that accompanied your compiler.

The syntax chart is only meant as a guide to the correct syntax of
instructions. If you have never worked with syntax charts before,
they may at first be intimidating, but keep in mind that the charts
are meant to be a tool. Compare the various constructs provided in C
(whlle, do-while, for, if, and so on) to their representations in syntax
“charts, and you should begin to understand the flow of the charts. If
you don’t understand a particular chart (a do-while loop, for exam-
ple), try implementing one in C and then comparing your implemen-
tation to the chart. It is important that you become familiar with
syntax charts because their popularity is continuing to grow each
day.

The following syntax charts illustrate the syntax associated with
the C programming language*. Programming examples follow most
of the diagrams. Several of the charts are intended for advanced C
programmers

-

*Brian W Kernigan apd Dennis Ritchie, The C Programming Language,
Prentice Hall, Inc.; Englewood Cliffs, N.J., 1978, Appendlx A -

. 8 THE C LIBRARY

Actual Parameters

— listof = >
. parameters

Examples:
a, b, c
E

. Arithmetic Operator

y=a & |
mder ;4__%,:'2: / * assigns remainder */

LANGUAGE OVERVIEW 9

Array Element

- array . .
— name . I expression

Examples:
string [1];
argv [2];

argv [argc—1};

Array Name

e identifier' p——%

- Example:
string

Assignment Operator

I arithmetic | '
operator
bitwise .
—» operator >
Examples:

x =5,
x+=56, /*x=x+5b=*/
X>>=2, /rx=x>>2 %/

