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PREFACE

This volume constitutes the proceedings of the conference on Fundamentals of Com-
putation Theory held in Szeged, Hungary, August 21-25, 1989. The conference is the
seventh in the series of the FCT conferences initiated in 1977 in Poznan-Kornik, Poland.
The conlerence was organized by the Attila Jézsef University (Szeged) with cooperation

of the Computer and Automation Institute of the Hungarian Academy of Sciences.

The papers in this volume are the texts of invited addresses and shorter communications
falling in one of the following sections:
Efficient Computation by Abstract Devices: Automata, Computability, I’robabilis-

tic Computations, Parallel and Distributed Computing

Logics and Meanings of Programs: Algebraic and Categorical Approaches Lo Se-
mantics, Computational Logic, Logic Programming, Verification, I’rogram Transforma-

tions, Functional Programming
Formal Languages: Rewriting Systems, Algebraic Language Theory

Computational Complexity: Analysis and Complexity of Algorithms, Design of
Efficient Algorithms, Algorithms and Data Structures, Computational Geometry, Com-
plexity Classes and Hierarchies, Lower Bounds
The shorter communications were selected on March 21 and 22, 1989 at the Program
(Selection) Cornmittee Meeting in Szeged from the large number of papers submitted

to FCT ’89.

Thanks are due to the members of the Program Comimittee for their work in evaluating
the submitted papers, to the members of the Organizing Committee for their hard job

in all organizational matters as well as to all referces of FCT '89.

Szeged, August 1989

Janos Csirik Janos Demetrovics Ferenc Gécseg
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ON WORD EQUATIONS AND MAKANIN’S ALGORITHM

Habib Abdulrab,  Jean-Pierre Pécuchet
Laboratoire d’Informatique de Rouen et LITP.
Faculté des Sciences, B.P. 118, 76134 Mont-Saint-Aignan Cedex t
E.m.: mcvaxlinria!geocublabdulrab mevax'inria!geocub!pecuchet

ABSTRACT. — We give a short survey of major results and algorithms in the
field of solving word equations, and describe the central algorithm of Makanin.

Introduction

An algebra equipped with a single associative law is a semigroup. It is a
monoid when it has a unit. The free monoid generated by the set A (also called
alphabet) is denoted by A*. Its elements are the words written on the alphabet A, the
neutral element being the empty word denoted by 1. The operation is the concatenation
denoted by juxtaposition of words. The length of a word w (the number of letters
compoging it) is denoted by |w|. For a word w = w; ... w,, with [w| = n, we denote
by w[i] = w; the letter at the ith position. The number of occurrences of a given letter
a € A in a word w, will be denoted by |w|a.

In this terminology, the term algebra (in the sense of [Fag Hue), [Kir]) built
on a set of variables V, a set C of constants, and a set of operators constituted of an
associative law, is nothing else than the free monoid T = (V |J C)* over the alphabet of
letters L=V JC. «

A unifier of two terms e;,e3 € T is a monoid morphisma : T — T (i.e. a
mapping satisfying a(mm') = a(m)a(m') and a(1) = 1), leaving the constants invariant
(i.e. satisfying a(c) = c for every ¢ € C) and satisfying the equality a(e;) = a(ez).

The pair of words ¢ = (e3,¢3) is called an equation and the unifier a is a -
solution of this equation.

A solution a : T — T' divides a solution 8 : T — T" if there exists a
continuous morphism 8 : TV — T" (i.e. satisfying 6(z) # 1 for every z) such as
B = af. We also say that a is more general than . A solution a is said to be
principal (or minimal) when it is divided by no other but itself (or by an equivalent
solution, i.e. of the form a' = aé with 8, an isomorphism).

The two main problems concerning systems of equations are the existence of a
solution, and the computation of the set of minimal solutions (denoted by uCSU,4 in
[Fag Hue]). All these problems reduce to the case of a single equation, as by [Alb Law]
every infinite system of equations is equivalent to one of its finite subsystems, and a
finite system can be easily encoded in a single equation [Hme].

t This work was also supported by the Greco de Programmation du CNRS and
the PRC Programmation Avancée et Outils pour I'Intelligence Artificielle.



The study of properties and stricture of the set of solutions of a word equation
was initiated by Lentin and Schiitzenberger ([Len Sch}, [Len]) in the case of constant-free
equations (C = 0). N

In particular, Lentin shows that every solution is divided by a unique minimal
one and gives a procedure (known as the pig-pug) allowing to enumerate the set of
minimal solutions. This procedure extends without difficulty to the general case of an
equation with constants (cf. [Plo}, [Pecl]). The minimal solutions are obtained as labels
of some paths of a graph. When this graph is finite, as in the case when no variable
appears more than twice, we obtain a complete description of all solutions.

The problem of the existence of a solution was first tackled by Hmelevskii who
solved it in the case of three variables [Hme], then by Makanin who solved the general
case [Makl]. He gave an algorithm to decide whether a word equation with constants
has a solution or not. ]

This paper is divided into two parts. The first one will be devoted to a brief
presentation of the pig-pug method which gives, for simple cases, the most efficient
unification algorithm. The rest of this paper will be devoted to Makanin’s Algorithm
[Mak1] as it is implemented by Abdulrab [Abd1]. In order to keep a reasonable size to
this paper, most of the proofs will be omitted.

1. The pig-pug

In the remaining part of this paper, we assume without loss of generality, that
the alphabets of variables V = {v;...v,} and of constants C = {c;...cmm} are finite
and disjoint. We make the convention to represent the variables by lower-case letters,
as 7,y,2..., and the constants by upper-case letters as A, B,C.... We call length of
an equation e = (e, e2) the integer d = [e;ez|.

The projection of an equation e over a subset Q of V is the equation obtained
by "erasing” all the occurrences of V '\ Q. Consequently, an equation has 2" projections
(Iger, Mqez) where g : (VJC)* — (QUJC)* is the projection morphism.

One easily proves the following proposition which reduces the research of a
solution to that of a continuous one.

Proposition 1.1 An equation e has a solution iff one of its projections has a continuous
solution.

The pig-pug method consists in searching for a continuous solution « in the
following manner: it visits the lists e;[1],...,e1[[e:]] and e;[1],...,ez{|ez|] of symbols
of e from left to right and at the same time, one tries to guess how their images can
overlap. At each step, one makes a non deterministic choice for the relative lengths of
the images of the first two symbols e;[1] et ez{1]. According to the choice made :

la(er (1)) < leez[1])],  la(er[1])] = la(ez(1])], la(es[1])] > Ja(e2[1])]

one applies to the equation one of the three substitutions to variables :

ez(l] —ex[l]ez[1], ex[l] — er[1], ex[1] « eafl]ey[1].



The process is repeated until the trivial equation (1,1) is obtained.

The application of the pig-pug method to all the projections of an equation
gives a graph labeled by the three previous transformations. The nodes of the graph are
the transformed equations.

The following result, a proof of which can be found in [Pecl}, shows that this
graph enumerates all the minimal solutions.

Theorem 1.2 [Len] The set of minimal solutions of a word equation is given by the
Iabels of the paths linking the root to the trivial equation in the pig-pug graph. |

One can consider the graph associated with an equation ¢, as a deterministic
automaton M, in which :
1) the alphabet is given by the projections and the variable substitution.
2) the states of the automaton are the vertices of the graph.

3) the final state is (1,1).
The language accepted by this automaton, designated L(M), is precisely the
set of all the minimal solutions of e, that is, a complete set of minimal unifiers.
When the graph is finite, L(M) is a regular language. But in the general case
the automaton is infinite. And L(M) in not necessarily regular, and not even a context-
free language, (for example, this is the case of the automaton M associated with the

equation e = (zAAyz, AzzBz)).

Note that L(M) is not necessarily minimal, in the sense that, equivalent minimal
unifiers can be generated within L(M).

In the general case, the pig-pug’s graph will be infinite. However one can always
decide the existence of a solution by:

Theorem 1.8 [Mak2] One can construct a recursive function F such that, if an equation
of length d has a solution, then there exists one in which the length of the components
of the solutions are bounded by F(d). §

The only known function F is that derived from Makanin’s algorithm that we
will see now. Another reason for the study of this algorithm is that it leads to a better
pruning of the graph, and is more efficient than the pig-pug method in some cases.

2. Length equations

Before describing Makanin’s algorithm, we introduce the notion of length
equations which is related to integer programming.

First note that if Card(C) = 0, the equation ¢ has necessarily the trivial solution
a(v) = 1, for every v € V. Consequently, we can assume that Card(C) > 0. An equation
is called simple if card(C) = 1. Such equations are related to integer equations in the
following way:

Let e be a simple equation, consider the commutative image e’ of e:

1 1,0 gn+1
(v ... o8Pt ot L pincint)



The linear diophantine equation: (p1—q1)vy'+. .. +(Pn—qn)Vn’ = (Gn+1—Pn+1)-
is called the length equation associated with e.

The isomorphism between ¢,* and (N, +) gives the following correspondence:

Proposition £.1 There is a bijective correspondence between the solutions of a simple
equation and the non-negative integer solutions of its length equation. |}

With every equation e we associate the simple equation e’ obtained by the
substitution of all the constants of e by c;. The length equation associated with ¢’ is by
definition that associated with e.

The following necessary condition is easily shown:

Proposition 2.2 If an equation e admits a solution, then its length equation admits a
non-negative integer solution. §

Thus solving simple equations reduces to integer programming. Next we shall
see how Makanin’s algorithm can solve non-simple equations.

3. Equation with scheme and position equation

In this section, we describe two basic notions appearing in Makanin’s algorithm:
the notion of an equation with scheme, and that of a position equation. We show how
to compute a position equation from an equation with scheme. '

3.1. Equation with scheme

Obviously, there are many possible ways of choosing the positions of the symbols
of e; according to those of the symbols of e;. For example, the following diagrams
illustrate such possibilities for the equation e = (AyB, zz).

*._A * y__* B * *__A_#_y_'*__B_* *__A_* -ﬂ_B_#

* - * * o * x * % x * 5 *

* X

Informaﬂy,lfa scheme applicable to an equation e = (e;,¢;) indicates how to
locate the positions of the symbols of e; according to those of e; in a possible solution
of e.

Formally, a scheme is a word s € = {=,<,>}* =, that is a word over the
alphabet {=, <, >} beginning and ending with the letter =.

A scheme s is called applicable to an equation e = (e;,ez) if the following
conditions are satisfied:

1) [sj< + Isl= = les] + 1.
2) |sl> + |s]= = |e2] + 1.




where {s|4, is the number of occurrences of ¢ in s.

The left and right boundaries of a symbol t (denoted by Ib(t) and r(t)) in a
scheme s applicable to e are the integers of the interval [1 |s|], defined in the following

way:

If t = e;[n] then Ib(t) is the length of the prefix of s whose length is equal to n
over the alphabet {=, <}, and rb(t) is the lehgth of the prefix of s whose length is equal
to n +1 over {=,>}. The definition in the case t = ez[n] is obtained from the previous-
one by exchanging < and >.

An equation with scheme is a 6-tuple (V, C, e, s, 1b, rb), where e is an equation
over the alphabet of variables V and the alphabet of constants C, s is a scheme applicable
to e, Ib and rb are left and right boundary maps. '
3.2. Informal presentation of an ezample

An equation with scheme will now be transformed into a new object over which
further processes will be applied. Before we give the formal definitions in the next
sections, we introduce here the different notions and notations via an example.

Consider the equation with scheme
({A, B}, {z,y,2}, AzyBz = z2z,=<><=<=,1b,rb)
corresponding to the following diagram:

* A % x"“y*B"‘z*
* b * g * (e *

= < > < = < =

This equation with scheme will be transformed into a so called position
equation. This object inherits the seven boundaries of the eqnation with scheme and of
all occurrences of constants, but variables will be treated in a special manner.

Variables with single occurrence, like y, will disappear.

Other occurrences of variables will be renamed in order to avoid the growth of
the equations appearing in the pig-pug method. The renamed occurrences of a similar
variable will be associated via a symmetrical binary relation on variables (called duality
relation) or a positional equivalence, depending on the number of these occurrences, as
shown below:

For a two occurrence variable, like z, the two occurrences will be renamed z,
and z2 and associated in the duality relation. That is, z; = dual(z;) and z; = dual(z,).

For a m occurrence variable u, with m greater than two, like z, 2m — 2 renamed
variables will be generated as follows :

1) m — 1 renamed variables (here z; and z;) will receive the place of the first
occurrence of u, (here the first occurrence of z = e3[1]).



2) m — 1 other renamed variables (here z3 and z,) will receive the place of the
m — 1 other occurrences of u, (here, e2(2] and &;[5]).

3) each variable of the first set is in duality with one of the second set, (here,
we have dual(z1) = z3,dual(23) = z1,dual(z2) = 24, dual(24) = 23).

So, the duality relation gives a sort of "link” between the first m —1 occurrences
associated with u, and the last m — 1 occurrences. Since z; = z; because they have the
same position, the equality of all the renamed variables z; = 2; = 23 = 24 is obtained.

We then obtain an object which can be illustrated by the following diagram:

2 3 4 H 6
—z1 —23_] x2.

z2 |

As in the pig-pug method, this position equation E will be transformed by
pointing out the leftmost element (here the occurrence of A) for substituting it into the
largest leftmost element (here the first largest leftmost variable z;). The difference is
that we put A at the beginning of the dual of z; (i.e. z3), rather than substitute A in
every variable associated with z;. Note that, there are two ways to put A as a prefix of
z3. Either A takes all the segment between 3 and 4, or a part of this segment.

In order to avoid any loss of information during this move, a link is created
between old and new positions of A in the form of a list called connection. This
transformation gives rise to the two new position equations E' and E" represented
below and corresponding to the two possible positions of A relatively to the boundary
4. The link or connection (2 2; 4) means that the prefix of z; ending at boundary 2 is
equal to the prefix of its dual (i.e. 23) ending at boundary 4.

2 03 4 % 6
x1 -B_| =
zl 23__| x2

—z2 | | A |

(2 21 4)
2 3 4 5 6 7 8
x1 —B_|_z4 _
—z1 —2z3_] x2
—22_ || _Aﬁ




