B.M. YAVORSKY AND A.A.DETLAF Translated from the Russian by NICHOLAS WEINSTEIN ### Б. М. ЯВОРСКИЙ, А. А. ДЕТЛАФ СПРАВОЧНИК ПО ФИЗИКЕ Москва «Наука» #### B.M. YAVORSKY AND A.A. DETLAF # A Modern Handbook Of PHYSICS Translated from the Russian by NICHOLAS WE STEIN First published 1982 . Revised from the 1980 Russian edition - Издательство «Наука». Главная редакция физико-математической литературы, 1982 - © English translation, Mir Publishers, 1982 此为试读,需要完整PDF请访问: www.ertongbook.co ### Contents | Preface | 16 | |---|----------| | PART ONE MECHANICS | | | CHAPTER 1 KINEMATICS | | | 1.1 Mechanical Motion. The Subject Matter of Mechanics
1.2 Frames of Reference. Path, Path Length and Dis- | 19 | | placement Vector of a Particle | 21 | | 1.3 Velocity - | 24 | | 1.4 Acceleration | 27 | | 1.5 Translational and Rotary Motion of a Rigid Body | 29 | | CHAPTER 2 NEWTON'S LAWS | | | 2.1 Newton's First Law. Inertial Frames of Reference | 34 | | 2.2 Force | 35 | | 2.3 Mass. Momentum
2.4 Newton's Second Law | 38
40 | | 2.5 Newton's Third Law. Motion of the Centre of Mass | 42 | | 2.6 Motion of a Body of Variable Mass | 44 | | 2.7 Law of Conservation of Momentum. | 46 | | 2.8 Galilean Transformations. Mechanical Principle of | 40 | | Relativity | 48 | | CHAPTER 3 WORK AND MECHANICAL ENERGY | | | 3.1 Energy, Work and Power | 51 | | 3.2 Kinetic Energy | 56 | | | 1 | 6 | | CONTENTS | |--|---|---|---|----------| | | | | • | | | 3.3 Potential Energy3.4 Law of Conservation of Mechanical Energy3.5 Perfectly Elastic and Inelastic Collisions | 59
63
66 | |--|----------------| | CHAPTER 4 DYNAMICS OF ROTARY MOTION | | | 4.1 Moment of Force and Angular Momentum | 70
74 | | 4.2 Moment of Inertia 4.3 The Fundamental Law in the Dynamics of Rotary | | | Motion 4.4 Law of Conservation of Angular Momentum | 77
81 | | CHAPTER 5 FUNDAMENTALS OF THE SPECIAL THEORY OF RELATIVITY | | | 5.1 Postulates of the Special Theory of Relativity5.2 Simultaneity of Events. Synchronization of Clocks | 84
87 | | 5.3 Lorentz's Transformations | 89 | | 5.4 Relativity of Lengths and Time Intervals. Time Interval Between Two Events | 90 | | 5.5 Transformation of Velocities and Accelerations in | 96 | | Relativistic Kinematics 5.6 Basic Law of Relativistic Dynamics | 99 | | 5.7 Mass-Energy Relation | 101 | | CHAPTER 6 GRAVITATION | | | 6.1 Law of Universal Gravitation | 104
107 | | 6.2 Gravitational Field6.3 Kepler's Laws. Space Velocities | 1112 | | CHAPTER 7 MOTION IN NONINERTIAL FRAMES OF REFERENCE | | | 7.1 Kinematics of Relative Motion | 115
117 | | 7.2 Inertial Forces 7.3 Relative Motion in a Frame of Reference Fixed to | | | the Earth, Gravity Force and Weight of a Dody | 119
123 | | 7.4 Principle of Equivalence | | ## PART TWO FUNDAMENTALS OF MOLECULAR PHYSICS AND THERMODYNAMICS | CHA | PTER 8 IDEAL GASES | | |------------|---|-----| | 8.1
8.2 | | 126 | | | gation · | 127 | | 8.3 | Thermodynamic Variables. Equations of State. Thermodynamic Processes | 129 | | 8.4 | Equation of State of an Ideal Gas | 132 | | CHA | APTER 9 FIRST LAW OF THERMODYNAMICS | | | 9.1 | Total and Internal Energy of a System | 134 | | 9.2 | Heat and Work | 137 | | 9.3 | | 140 | | 9.4 | | | | 0 E | Processes and Work | 141 | | 9.5 | Heat Capacity of Matter. Applying the First Law of Thermodynamics to Isoprocesses in an Ideal Gas | 143 | | CH | APTER 10 KINETIC THEORY OF GASES | | | 10.1 | Certain Information on Classical Statistical Physics | 151 | | | Basic Equation of the Kinetic Theory of Gases | 152 | | 10.3 | Maxwell's Molecular Velocity and Energy Distri- | _ | | | bution Law (Maxwell's Distribution Law) | 154 | | 10.4 | Particle Distribution in a Potential Force Field | 450 | | 40.5 | (Boltzmann Distribution) | 159 | | | Mean Free Path of Molecules Reinairle of the Equipartition of Energy Internal | 161 | | 10.0 | Principle of the Equipartition of Energy. Internal
Energy of an Ideal Gas | 162 | | 10.7 | Heat Capacity of Monoatomic, Diatomic and Poly- | 102 | | | atomic Gases | 165 | | 10.8 | Transport Phenomena in Gases | 170 | | | Properties of Rarified Gases | 175 | | CH/ | APTER 11 SECOND LAW OF THERMODYNAMICS | | | 11.1 | Cycles. The Carnot Cycle | 177 | | | Reversible and Irreversible Processes | 181 | | CONT | ENTS | |--|------------| | 11.3 Second Law of Thermodynamics
11.4 Entropy and Free Energy | 182
185 | | 11.5 Statistical Interpretation of the Second Law of Thermodynamics | 188 | | 11.6 Fluctuations | 189 | | 11.7 Brownian Movement | 192 | | 11.8 Third Law of Thermodynamics | 193 | | CHAPTER 12 REAL GASES AND VAPOURS | | | 12.1 Forces of Intermolecular Interaction | 194 | | 12.2 Van der Waals Equation of State | 200
202 | | 12.3 Isothermals of Real Gases. Phase Transitions 12.4 Superfluidity of Helium | 202
205 | | CHAPTER 13 LIQUIDS | | | 13.1 Certain Properties of Liquids | 207 | | 13.2 Frenkel's Hole Theory of the Liquid State | 208 | | 13.3 Diffusion and Viscosity Phenomena in Liquids | 210 | | 13.4 Surface Tension of Liquids | 211
213 | | 13.5 Wetting and Capillary Phenomena
13.6 Vaporization and Boiling of Liquids | 217 | | PART THREE ELECTRODYNAMICS | *• | | CHAPTER 14 ELECTRIC CHARGES. COULOMB'S LAW | | | 14.1 Introduction | 220 | | 14.2 Coulomb's Law | 221 | | CHAPTER 15 ELECTRIC FIELD STRENGTH AND DISPLACE-
MENT | | | 15.1 Electric Field, Field Strength | 224 | | 45.9 Dringing of Superposition of Electric Fields | 226 | | 15.3 Electric Displacement. Ustrogradsky-Gauss Liec- | 230 | | tric Flux Theorem | 230 | | CHAPTER 16 ELECTRIC FIELD POTENTIAL | | |--|--------------------------| | 16.1 Work Done in Moving an Electric Charge in an Electrostatic Field 16.2 Potential of an Electrostatic Field 16.3 Relation Between the Potential and Strength of an Electrostatic Field 16.4 Conductors in an Electrostatic Field | 234
236
240
242 | | CHAPTER 17 CAPACITANCE | | | 17.1 Capacitance of an Isolated Conductor
17.2 Mutual Capacitance. Capacitors | 244
24 5 | | CHAPTER 18 DIELECTRICS IN AN ELECTRIC FIELD | | | 18.1 Dipole Moments of Molecules of a Dielectric 18.2 Polarization of Dielectrics | 249
251 | | 18.3 Relation Between Displacement, Field Strength and Polarization Vectors 18.4 Ferroelectric Materials | 255
257 | | CHAPTER 19 ENERGY OF AN ELECTRIC FIELD | | | 19.1 Energy of a Charged Conductor and an Electric Field19.2 Energy of a Polarized Dielectric | 260
263 | | CHAPTER 20 DIRECT ELECTRIC CURRENT | | | 20.1 Concept of an Electric Current
20.2 Current and Current Density | 264
265 | | 20.3 Fundamentals of the Classical Electron Theory of Electrical Conduction in Metals | 267 | | CHAPTER 21 DIRECT CURRENT LAWS | | | 21.1 Extraneous Forces 21.2 Ohm's Law and the Joule-Lenz Law 21.3 Kirchhoff's Laws | 270
271
275 | | CHAPTER 22 ELECTRIC CURRENT IN LIQUIDS AND GASES | | |--|--| | 22.1 Faraday's Laws of Electrolysis. Electrolytic Dissociation 22.2 Atomicity of Electric Charges 22.3 Electrolytic Conduction of Liquids 22.4 Electrical Conduction in Gases 22.5 Various Types of Gas Discharges 22.6 Certain Information on Plasma | 278
280
280
282
283
286 | | CHAPTER 23 MAGNETIC FIELD OF DIRECT CURRENT | | | 23.1 Magnetic Field. Ampere's Law 23.2 The Biot-Savart-Laplace Law 23.3 Simplest Cases of Magnetic Fields Set Up by Direct Currents 23.4 Interaction of Conductors. Effect of a Magnetic Field on Current-Carrying Conductors 23.5 Total Current Law. Magnetic Circuits 23.6 Work Done in Moving a Current-Carrying Conductor in a Magnetic Field CHAPTER 24 MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELDS 24.1 Lorentz Force 24.2 Hall Effect 24.3 Charge-to-Mass Ratio of Particles. Mass Spectroscopy | 290
292
296
302
304
308
310
314
317
318 | | 24.4 Charged Particle Accelerators CHAPTER 25 ELECTROMAGNETIC INDUCTION | 010 | | 25.1 Basic Law of Electromagnetic Induction
25.2 Phenomenon of Self-Induction
25.3 Mutual Induction
25.4 Energy of a Magnetic Field Set Up by an Electric | 323
327
330 | | Current | 332 | | CHAPTER 26 MAGNETIC MATERIALS IN A MAGNETIC FIELD | | |---|--------------------------| | 26.1 Magnetic Moments of Electrons and Atoms
26.2 An Atom in a Magnetic Field
26.3 Diamagnetic and Paramagnetic Materials in a Uni- | 335
337 | | form Magnetic Field 26.4 Magnetic Field in Magnetic Materials 26.5 Ferromagnetic Materials | 340
344
346 | | CHAPTER 27 FUNDAMENTALS OF MAXWELL'S THEORY | | | 27.1 General Features of Maxwell's Theory 27.2 Maxwell's First Equation 27.3 Displacement Current. Maxwell's Second Equation 27.4 Complete Set of Maxwell's Equations for an Electromagnetic Field | 350
351
353
357 | | PART FOUR OSCILLATIONS AND WAVES CHAPTER 28 FREE HARMONIC OSCILLATIONS | | | 28.1 Harmonic Oscillations 28.2 Mechanical Harmonic Vibrations 28.3 Free Harmonic Oscillations in an Oscillatory | 362
366 | | Electric Circuit 28.4 Adding Harmonic Oscillations | 372
374 | | CHAPTER 29 DAMPED AND FORCED OSCILLATIONS | | | 29.1 Damped Oscillations 29.2 Forced Mechanical Vibration 29.3 Forced Electrical Oscillation | 384
388
393 | | CHAPTER 30 ELASTIC WAVES | | | 30.1 Longitudinal and Transverse Waves in an Elastic
Medium
30.2 Travelling Wave Equation | 398.
401 | | 12 | | | CONTENTS | |----|--|--|----------| | | | | | | 30.3 Phase Velocity and Energy of Elastic Waves 30.4 Principle of Superposition of Waves. Group Velocity 30.5 Interference of Waves. Standing Waves 30.6 Doppler Effect in Acoustics CHAPTER 31 ELECTROMAGNETIC WAVES | 406
411
414
420 | |---|---| | 31.1 Properties of Electromagnetic Waves 31.2 Energy of Electromagnetic Waves 31.3 Electromagnetic Radiation 31.4 Electromagnetic Spectrum 31.5 Reflection and Refraction of Electromagnetic Waves at the Interface Between Two Dielectric Media 31.6 Doppler Effect | 422
427
430
433
435
440 | | PART FIVE OPTICS | | | CHAPTER 32 INTERFERENCE OF LIGHT | | | 32.1 Monochromaticity and Time Coherence of Light 32.2 Interference of Light. Spatial Coherence of Light 32.3 Interference of Light in Thin Films 32.4 Multiwave Interference | 444
446
453
457 | | CHAPTER 33 DIFFRACTION OF LIGHT | | | 33.1 Huygens-Fresnel Principle 33.2 Fresnel Diffraction 33.3 Fraunhofer Diffraction 33.4 Diffraction by a Space Lattice 33.5 Resolving Power of Optical Instruments 33.6 Holography | 461
465
467
474
476
478 | CONTENTS 13 | | R 34 ABSORPTION, SCATTERING AND DISPERDED LIGHT. VAVILOY-CHERENKOY RADIATION | | |--|--|--| | 34.2 Ab
34.3 Sca
34.4 No
34.5 Cla | teraction of Light with Matter sorption of Light attering of Light normal and Anomalous Light Dispersion assical Electron Theory of Light Dispersion vilov-Cherenkov Radiation | 481
482
485
487
489
492 | | CHAPTE | R 35 POLARIZATION OF LIGHT | | | 35.2 Bir
35.3 Int
35.4 Art | larization of Light in Reflection and Refraction
the Interface Between Two Dielectric Media
refringence (Double Refraction)
terference of Polarized Light
tificial Optical Anisotropy
tation of the Plane of Polarization | 495
498
504
508
510 | | CHAPTE | R 36 THERMAL RADIATION | | | 36.2 Ste
36.3 Pla | nermal Radiation. Kirchhoff's Law
ofan-Boltzmann and Wien Laws
anck's Formula
tical Pyrometry | 511
516
518
522 | | CHAPTE | R 37 FUNDAMENTALS OF QUANTUM OPTICS | | | 37.3 Co | cternal Photoelectric Effect (Photoemissive Effect) ass and Momentum of the Photon. Light Pressure mpton Effect ave-Particle Duality of the Properties of Light | 524
528
530
533 | 14 | PART SIX ATOMIC AND MOLECULAR PHYSICS | | |--|--| | CHAPTER 38 ELEMENTS OF QUANTUM MECHANICS | | | 38.1 Wave-Particle Dualism of the Properties of Particles of Matter 38.2 Schrödinger Wave Equation 38.3 Motion of a Free Particle 38.4 A Particle in a One-Dimensional Infinitely Deep Potential Well 38.5 Linear Harmonic Oscillator 38.6 Heisenberg Indeterminacy Principle 38.7 Tunnel Effect | 535
537
540
541
543
548
551 | | CHAPTER 39 STRUCTURE OF ATOMS AND MOLECULES AND THEIR OPTICAL PROPERTIES | | | 39.1 The Hydrogen Atom and Hydrogen-Like Ions 39.2 Space Quantization 39.3 Pauli Exclusion Principle. Mendeleev's Periodic Table 39.4 Chemical Bonds and Molecular Structure 39.5 Optical Properties of Molecules. Molecular Spectra 39.6 Raman Scattering of Light 39.7 Luminescence. X rays 39.8 Stimulated Emission of Radiation. Lasers | 554
559
561
563
566
568
570
573 | | PART SEVEN BASIC SOLID-STATE PHYSICS CHAPTER 40 STRUCTURE AND CERTAIN PROPERTIES | | | OF SOLIDS | 5 7 9 | | 40.1 Structure of Solids 40.2 Thermal Expansion of Solids 40.3 Brief Information on the Elastic Properties of Solids 40.4 Basic Concepts of Phase Transitions in Solids | 580
582
585 | | CHAPTER 41 AN OUTLINE OF THE QUANTUM PHYSICS OF SOLIDS | | |--|--| | 41.1 Basic Concepts of Quantum Statistics 41.2 Bose-Einstein and Fermi-Dirac Distribution Functions | 588
589 | | 41.3 Degeneracy of Systems of Particles Described by
Quantum Statistics | 592 | | 41.4 Degenerate Electron Fermi Gas in Metals 41.5 Quantum Theory of Electrical Conduction in Metals 41.6 Superconductivity 41.7 Heat Capacity of Solids 41.8 Band Theory of Solids 41.9 Metals and Dielectrics in the Band Theory 41.10 Electrical Conduction of Semiconductors 41.11 Concept of Contact Electrical Phenomena in Metals and Semiconductors | 594
598
601
605
610
613
615 | | PART EIGHT NUCLEAR PHYSICS AND ELEMENTARY PARTICLES CHAPTER 42 STRUCTURE AND BASIC PROPERTIES OF ATOMIC NUCLEI | | | 42.1 Main Properties and Structure of the Nucleus 42.2 Binding Energy of Nuclei. Mass Defect 42.3 Nuclear Forces 42.4 Radioactivity 42.5 Alpha Decay 42.6 Beta Decay 42.7 Gamina Rays 42.8 Mössbauer Effect 42.9 Nuclear Reactions | 626
628
631
633
637
639
642
645 | | CHAPTER 43 ELEMENTARY PARTICLES | | | 43.1 Preliminary Information on Elementary Particles 43.2 Classification of Elementary Particles and Their Interaction | 660
662 | 16 | 43.3 | Certain Information on Various Elementary Parti-
cles | 665 | |------|---|-------------| | 43.4 | Certain Conservation Laws in Elementary-Particle
Physics | 668 | | 43.5 | Antiparticles | 671 | | 43.6 | Structure of the Nucleon | 673 | | PAR | T NINE APPENDICES | | | I S | ystems of Units of Physical Quantities | 676 | | II F | 'undamental Physical Constants | 681 | | Inde | | 69 5 |