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Preface

I the last several years, strong interest has continued in the study of opti-
mization theory as applied to the control of systems. The purpose of this
text is to provide a reasonably comprehensive treatment of this optimum-
systems control field at a level comparable to that of a beginning graduate
student. In this regard, the book does not require prior background in state

~space techniques,-calculus of variations, or probability theory, although
some exposure, particularly to the first and third topics, would be of value.
The text has been written strictly from the point of view of an engineer with
interest in the study of systems. Consequently, we emphasize the basic con-
cepts of various techniques and the relations, similarities, and limitations of
these basic concepts at the expense of mathematical rigor. As befits an intro-
ductory text, the level of presentatlon is generally monotone mcreasmg from
chapter to chapter.

Structurally, the text is d1v1ded into four areas although overlap certamly
exists. These are:

1. Optimal control with deterministic inputs (Chapters 2, 3, 4, 5, 6).

2. Systems concepts including controllability, observability, sensitivity,
and stability (Chapter 7).

3. State estimation and combined estimation and control (Chapters 8, 9).
4. Computational techniques in systems control (Chapter 10).

There are several ways in which the text can be used. There is undoubtedly
too much material covered for a one three-semester credit hour course,
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although the material can easily be covered in two three-quarter hour courses.
For a single three-semester hour course, we suggest that the instructor con-
sider eliminating either Chapters 8 and 9 or Chapter 10, as best fits following
courses in mathematical system theory. If a course using this text has been
preceded by a graduate level course in state space techniques, then Chapter 7 -
may be eliminated, and the more advanced backgrounds of the students may
well allow completion of the remainder of the text in one semester.

This edition of Optimum Systems Control is considerably revised and we
hope much improved over the first edition. Every chapter in the original text
has been subject to this revision. Several new derivations and examples have
been included as have developments in optimum systems control that were
unknown during the writing of the first edition. The senior author considers
it his personal good fortune that he was able to obtain the full and complete
collaboration of an outstanding young professional who has contributed
mightily to this updating. The authors wish to acknowledge the helpful assis-
tance of many former students, including those mentioned in the first edition,

who have offered many helpful comments when reading through earlier
versions of the text.

University of Virginia | ANDREW P. SAGE
CHELSEA C. WHITE, 111
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Introduction

In recent years much attention has been focused upon optimizing the
behavior of systems. A particular problem may concern maximizing the
range of a rocket, maximizing the profit of a business, minimizing the error
in estimation of position of an object, minimizing the energy or cost required
to achieve some required terminal state, or any of a vast variety of similar
statements. The search for the control which attains the desired objective
while minimizing (or maximizing) a defined system criterion constitutes the
fundamental problem of optimization theory.

The fundamental problem of optimization theory may be subdivided into
four interrelated parts:

1. Definition of a goal.

2. Knowledge of our current position with respect to the goal.

3. Knowledge of all environmental factors influencing the past, present,
and future.

4. Determination of the best policy from the goal definition (1) and knowl-
edge of our current state (2) and environment (3).

To solve an.optimization problem, we must first define a goal or a cost
function for the process we are attempting to optimize. This requires an
adequate definition of the problem in physical terms and a translation of this
physical description into mathematical terms. To effectively control a process,
we must know the current state of the process. This we will call the problem

1
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2 | INTRODUCTION CH. 1

of state estimation. Also, we must be able to characterize the process by an
effective model which will depend upon various environmental factors. This
we will call system identification. With a knowledge of the cost function, and
the system states and parameters, we then determine the best control which
minimizes (or maximizes) the cost function. Thus we may define five prob-
lems, which are again interrelated, and which we must solve in order to deter-
mine the best, or optimum, system

‘..-

1. The Control Problem. We are given a known system with relation be-
tween system states and input control. We desire to find the control
which changes the state x(¢) so as to accomplish some desirable objec-

“tive. Figure 1.1 illustrates the salient features of the control problem.
This may be an open- or closed-loop problem, depending upon
whether or not the control is a function of the state.

Fig. 1.1 Deterministic optimum control problem.

2. The State Estimation Problem. We are given a known system with a
random input and measurement noise such that we measure an output
z(#) which is a corrupted version of x(#) as indicated in Fig. 1.2. We
know the statistics of the plant noise w(f) and the measurement noise
(1), and we desire to determine a “best” estimate 2(¢) of the true system

! state x(f) from a knowledge of z(r).

v(t) |
Measurement
noise
w(?) . Known x{1) Measurement z(1)
Plont noise plant System state device |Observed state

Fig. 1.2 State estimation problem.

3. The Stochastic Control Problem. We may combine problems 1 and 2
to form a stochastic control problem as depicted in Fig. 1.3. We desire
to determine a control u(z) such that the output state x(¢) 1s changed
in accordance with some desired objective. Plant noise w(¢) and mea-
surement noise v(¢) are present. We know the statistics of these noises
and must of course determine a best estimate, %(z), of x(¢) from a
knowledge of the output z(r) before we may dlscem the “best” control
which may be open- or closed- loop « |

\
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wi?) v(?)

Plont Me_osuremém
nOISe noise
T -
u(r) Known | ~ x{1) ,.| Measurement
———{ .
Control plont System state device
L | l )

Fig. 1.3 Stochastic control proialcm.

4. The Parameter Estimation Problem. In many systems we must incor-
porate some method of identification of system parameters which may
vary as a function of the environment. We are given a system such as
that shown in Fig. 1.4, where we again know the statistical character-
i1stics of the plant and the measurement noise, and we wish to determine
the best estimate of certain plant parameters based upon a knowledge
of the deterministic input u(f), the measured output z(¢), and possibly
some a priori knowledge of the system plant structure. As we shall see,
we often must accomplish state estimation in order to obtain parameter

estimation.
w(?) | v(t)
Plont | Measurement
noise noise
u(t) Unknown x{t) Measurement P4l f).
Control plant System state device  |Observed state

Fig. 1.4 Parameter estimation problem.

5. The Adaptive Control Problem. We may combine problems 1 through
4 to form an adaptive control problem. We are given the statistical
characteristics of w(r) and v(¢) or some method of determining these
characteristics. Plant parameters are random. We desire to determine
a control u(r) to best accomplish some desired objective in terms of the
measurement noise and plant noise as well as the uncertainty in system
dynamics. If the control u(¢) is determined as a function of the measured
output z(¢), we have a closed-loop adaptive system.

We will divide our efforts in optimum systems control into ten chapters.
These chapters and their respective purposes and contents will now be
described briefly. Each chapter will contain several examples to illustrate our
developed theory. Many problems, of varying complexity, will be posed at
the end of each chapter for the interested reader.
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2

Calculus of extrema and single-stage decision processes

This chapter examines ordinary scalar maxima and minima and extrema
of functions of two or more variables. Constrained extrema and the vector

formulation of extrema problems are presented for single-stage decision
processes.

3
Variational calculus and continuous optimal control

~In this chapter, we introduce the subject of the variational calculus for
continuous decision processes through a derivation of the Euler-Lagrange
equations and associated transversality conditions. We discuss the use of
Lagrange multipliers to treat equality constraints and briefly mention the
inequality constraint problem. Several very simple optimal control problems
are considered.

4
The maximum principle and Hamilton-Jacobi theory

In this chapter, the Bolza formulation of the variational calculus leads
into a proof of the Pontryagin maximum principle and the development of
the Hamilton canonic equations and the associated transversality conditions.
We discuss at some length problems involving control and state, and state
variable inequality constraints. The Hamilton-Jacobi equations are then
developed and modified to produce Bellman’s equations of continuous
- dynamic programming. |

5

Optimum systems control examples

This chapter formulates and solves numerous optimal control problems
of interest; among those solved are:

Minimum time problems.
Linear regulator problems.
Servomechanism problems.
Minimum fuel problems.

. Minimum energy problems.

N bW =



CH.1 INTRODUCTION 5

6. Singular solution problems.
7. Distributed parameter problems.

6

Discrete variational calculus and
the discrete maximum principle

In this chapter, we develop a simplified discrete maximum principle for
cases in which control and state variable inequality constraints are absent.
We give a meaningful comparison of the discrete maximum principle and the
discretized results of application of the continuous maximum principle for a
rather general optimization problem. We conclude our discussion with a
brief presentation of the relationship between discrete time optimal control
and mathematical programming.

T

Systems concepts

After having established and solved many state estimation problems and
optimal control problems, we now inquire into the conditions which must
be established in order for many of these problems to have meaningful solu-
tions. First we examine the manner in which the output of a system is con-
strained with respect to the ability to observe system states. Then we examine
the dual requirement and find the characterization of the manner in which
a system is constrained with respect to control of system states or system
outputs.

Also presented are various methods for studying the parameter sensitivity
problem in continuous systems. The use of sensitivity concepts in optimal and
optimal adaptive systems are presented. A brief introduction to system
stability concepts and a discussion of stability-optimality relations for linear
systems concludes the chapter.

8

Optimum state estimation

Chapter 8 introduces the subject of optimum filtering. The state transition
approach i1s used, which allows us to develop the celebrated Kalman-Wiener
computational algorithms for nonstationary filtering. The dual relations
between the filter and the regulator problems are observed, and the difference
between optimum smoothing and optimum filtering is discussed.



