rundamental Struciures
of Computer Science

Fundamental
Structures of
Computer
Science

William A. Wulf
Mary Shaw
Paul N. Hilfinger

Computer Science Department
Carnegie-Mellon University

Lawrence Flon

Computer Science Department .
University of Southern Californig

A
A\ A4

ADDISON-WESLEY PUBLISHING COMPANY
Reading. Massachusetts ® Mento Park, California
London ® Amsterdam ® Don Mills, Ontario @ Sydney

Reproduced from camera-ready copy provided by the authors. The copy was pre-
pared at Carnegie-Mellon University on a photocomposer operated by the SCRIBE
text editing system.

Library of Congress Cataloging in Publication Data
Main entry under title: ’

Fundamental structures of computer science.

Includes bibliographical references and index.

1. Electronic digital computers— Programming.
2. Data structures (Computer science) [Wulf,
Wiiliam Allan. N
QA76.7.F86 001.6'42 79-12374 ;
ISBN 0-201-08725-1

Copyright © 1981 by Addison-Wesley Publishing Company, Inc. Philippines copy-
right 1981 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a .
retrieval system, or transmitted, in any form or by any means, electronic, ¢
mechanical, photocopying, recording, or otherwise, without the prior written '
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada. Library of Congress Catalog Card No. 79-12374 l

ISBN 0-201-08725-1
CDEFGHLIK-DO-898765432

Preface

This textbook is designed to support an intermediate-level course in
computer science. It is intended for students who have at least one or two
semesters of programming and problem-solving experience and who wish
to prepare for more advanced topics in computing. Ideally, the students
will also have a semester’s background in discrete mathematics.

The content and organization of the textbook was motivated by a
single premise—that programming is an engineering discipline. Like other
engineering desciplines, programming is concerned with building things,
particularly real things of enormous practical importance. And, like other
engineering, good programming is rooted in the application of science.
Understanding that science is essential to being a good programmer.

This textbook is also an introduction to the science that underlies
good programming. Many of the concepts involved are mathematical.
Software concepts such as program organization, data structures, perform-
ance analysis, and so on, have traditionally been taught only as
programming techniques. In this textbook we support these programming
techniques by relating programming ideas to the underlying mathematical
concepts of automata, formal languages, data types, and so on. Through
examples we illustrate the relation and utility of the mathematical concepts
to practical contexts.

Much of the material presented in this textbook has traditionally been
taught (in greater depth) in advanced undergraduate and graduate courses.
We believe, however, that it is both necessary and appropriate to introduce
this material at an early stage. Just as introductory calculus and physics are

vi Preface

prerequisite to most engineering courses, the material presented here
forms an appropriate background for courses in software engineering and
advanced computer science. For the organization of this material, see the
matrix on page 8 and the discussion immediately preceding it.

Using the Book

We originally designed this textbook for a second course in computer
science, and since 1974 have used various generations of it for a
one-semester sophomore course. One semester is not enough to cover all
the material now contained in the textbook, but in a semester we can
generally cover most of Parts One and Two and the theoretical material in
Part Three. We also cover several of the example chapters in Part Four.
Homework usually involves substantial programming exercises. Although
we are aware that this is a large amount of material to cover in one
semester, we have not observed that our students have any great difficulty
with the level of the material.

Although we strongly believe that the material in the textbook is best
presented early, that is in a second course in computer science, there are
other ways that the book can be used. For example,

» As the basis of a two-semester course: This textbook contains ample
material for a full-year course. In such a course, however, we would
not only cover this material, but also emphasize advanced program-
ming techniques and more advanced data structure representations.

» Merged with a software engineering course: Most of the material in
this text is among the formal prerequisites for a rigorous treatment of
software engineering. Half of a third or fourth year course in software
engineering might profitably be spent on the chapters about formal
models, specification, verification, and performance analysis.

s Incorporated into a theoretical computer science course: Much of the
material in this course is predicated on a knowledge of discrete
mathematics and formal logic and therefore constitutes a meaningful
application of these formal mathematical ideas.

s As in-house training material for practicing programmers: Most of
today’s practicing programmers were educated when computing was
little more than a collection of tricks. That’s no longer the case. In
order to compete with the recent graduates, the experienced
professional will need to master the material we cover—especially the
more formal material.

e e

I T

Preface vii

The language used throughout this book is essentially PASCAL. The
material we cover, however, applies to programming in general, rather
than to any particular language, and so we have felt free to deviate from
PASCAL from time to time in presenting some material. Appendix C
summarizes the major deviations. The programs in the example chapters
have all been executed with a PASCAL compiler for the DEC PDP-10
originally developed at the University of Hamburg, Germany. We have,
however, tried to avoid including in our examples any statements peculiar
to that compiler.

Computer Science has made enormous advances in the past 10 to 15
years. It is no longer simply an art or an ad hoc collection of programming
tricks. There is now a genuine body of science and mathematics that the
programmer of the future must know and use. This book is hardly the last
word that will be written on the subject, but it is a good beginning for new
students and a sourcebook for the experienced professional.

Acknowledgments

The authors gratefully acknowledge the support and assistance of

= All those students over the past six years who have suffered through
drafts of our material,

s Anita Andler, Sharon Carmack, and Dorothy Josephson, who
(re)"typed much of the material, adapting to a series of dynamically
developing computerized document production systems,

» The graduate students who helped teach sections of the course and
who contributed material and comments: Sten Andler, Lee Cooprider,
David Notkin, Gary Feldman, Lanny Forgy, Brian Reid, and Elaine
Rich.

= Brian Reid, who developed and maintains SCRIBE, the document
production system that allowed the manuscript of this textbook to be
almost automatically produced,

s Bob Morgan, who gave some of us strong personal support,

= Jon Bentley, whose experiences with using the textbook in an
industrial setting gave us new insights into ways to teach the material,

« A host of readers and reviewers, both known to us and anonymous,
whose comments were invaluable, notably Terry Baker, Jon Bentley,
Ron Brender, Mike Horowitz, David Jefferson, John Kender, David
Lamb, David Levine, Tony Ralston, Brian Reid, Peggy Ross, Len
Shustek, John Sowa, Bob Sproull, and Judy Zinnikas,

viii Preface

s The National Science Foundation and the Defense Advanced Re-
search Projects Agency, which provided support for the research
environment in which we learned much of what we teach here.

Pittsburgh, Pennsylvania W.AW,
April 1980 M.S.
P.N.H.

L.F.

CHAPTER 1
1.1

1.2

1.3

1.4

1.5

1.6

CHAPTER 2

Contents

Part One/Fundamental Structures
of Control

FINITE STATE MODELS

Finite State Machines

State Transition Functions

State Transition Diagrams

Special FSM’s: Recognizers and Generators, Null
Transitions

Bigger Inputs and Outputs

Nondeterministic FSM’s

Languages and Regular Expressions
Languages
Regular Expressions

Equivalence of Regular Expressions and FSM’s
Example: Construction of NDFSR from RE

Characterizing the “Power” of Computational Models
A Limitation of FSM’s

Further Reading

MORE MODELS OF CONTROL: FLOWCHARTS AND
PROGRAMS

ix

11

11
14
16
17

19
20

25
25
26

29
32

33
34

36

49

X Contents

2.1

22

23
24

CHAPTER 3
3.1

3.2

33

34
35

CHAPTER 4
4.1

4.2

43
44

CHAPTER 5

5.1
5.2

Flowcharts
The Relation Between FSM's, RE’s, and Flowchart

Programs

Simple Programming Language Control
FCL/1

FCL/2

Equivalence of Flowcharts and Programs
Further Reading

ADDITIONAL CONTROL STRUCTURES

Selection Constructs

The *‘case” Statement

The “numberedcase™ Statement
Iterative Constructs

The “‘repeat™ and “loop” Statements
The ““for” Statement

Routines

Routine Invocation

Parameters

Value-returning and Value-less Routines
Recursive Routines

The Power of Routines

Summary: Equivalence, Power, and Convenience

Further Reading

THE REPRESENTATION OF CONTROL

Representation of FCL/2 Constructs

The Representation of Sequential Control
The Representation of “if-then-else™

The Representation of “while”

Representation of Other Control Constructs
Representation of “‘repeat™
Representation of “numberedcase™

Representation of Routines
Further Reading

FORMAL SPECIFICATION AND PROOF OF
PROGRAMS

Specification of Programs
Program Proofs

49
53

55
55
56

56
59

65

66
66
67

68
68
69

71
72
73
74
75
77

7
78

85

86
87
87
87

88

88
90
92

101

102
105

5.3

5.4

5.5
5.6

CHAPTER o
6.1

6.2
6.3
6.4

6.5

6.6

CHAPTER 7

Contents

Computing wp; Language Semantics
The Null Statement

Sequencing

The *if”* Statement

The Assignment Statement

Two Examples

Embedded Assertions

Weakest Precondition for the “while™ Statement
The “for™ Statement

The Procedure Call

An Example with Procedures
Dealing with Parameters

Summary of Weakest Preconditions

Weaknesses in Correctness Arguments
Errors in Specification

Errors in Proofs

Validation: Testing Versus Verification

Further Reading

DETERMINING EFFICIENCY OF COMPUTATIONS

Two Easy Examples

Polynomial Evaluation

Series Evaluation

Improvements Come in Different Flavors

Order Arithmetic
Gathering and Using Information about Efficiency

Experimental Determination of Performance
Counting Operations
Measuring Time

Analytic Determination of Performance

Verifying Statements about Operation Counts

A Formal Technique for the Analysis of Execution
Time

Sample Values for Constants

Examples Revisited

Another Example

Further Reading

Part Two/Fundamental Structures
of Data

MATHEMATICAL MODELS OF DATA

xi

106
108
108
108
109
11
112
112
120
123
125
126
127

129
129
130

130
131

145

146
146
148
149

150
153

154
155
156
157
158
160

164

166
168

172

179

181

xii Contents

7.1
1.2

7.3
7.4

1.5

CHAPTER 8
8.1

8.2

83

84

8.5

CHAPTER 9
9.1

9.2

9.3

CHAPTER 10

Introduction

Memory, Variables, Names, and Values

A Functional Description of Memory

An Axiomatic Description of Memory

Relating the Functional and Axiomatic Descriptions

Type

Describing Types
Syntactic Specification
Semantic Specification

Further Reading

DATA IN PROGRAMMING LANGUAGES

Scalar Types
Enumerated Types

Names and References

Use of References in Assignments

Use of References for Parameter Passing
Expilicit Reference Types

Structured Types

Arrays

Records

Other Data-Related Issues that Arise in Programming
Languages

Unions

Conversions Between Types: Coercions

Variable Declarations

Storage Management and Allocation

Further Reading

NONELEMENTARY DATA STRUCTURES

Abstract Structured Types: Linear Structures
Deques

Queues

Stacks

Linear Lists

Abstract Structured Types: Nonlinear Structures
Labeled Graphs

Trees

Finite Homogenous Sets

Further Reading

THE REPRESENTATION OF DATA

181

182
182
184
186

187

189
190
191

194

203

203
204

206
209
211
212

212
213
216

217

217
219
219
223

223

233

233
234
236
237
237

245
245
248
250

251

263

10.1

10.2
10.3

10.4

10.5

10.6

10.7

CHAPTER 11
1.1

11.2
11.3
11.4

CHAPTER 12

12.1
12.2

Contents

Representational Techniques for Data

Encoding

Packing

Address Arithmetic

Linking

Concluding Remarks on Representational Techniques
Representation of Stacks

Representation of Deques and Queues
Vector Representation: Circular Buffering
Linked Implementation

Representation of Trees and Graphs

Linked Unlabeled Graph Representations
Linked Tree Representation

Vector Implementation of Binary Trees

Array Representation of Unlabeled Graphs
Representation of Sets

Bit-Vector Representation of Sets
Vector-Pointer Representation of Sets

Linked Representation of Sets

The Representation of Multidimensional Arrays
More on Vector Representation: Descriptors
Address Computations for Multidimensional Arrays
A Slight Variation: Triangular Arrays
Representation of Slices

Tlliffe Vectors

Linked Representation of Sparse Arrays

Further Reading

CORRECTNESS OF DATA REPRESENTATIONS

An Example: Proof of Type Stack
What We Must Prove

Adequacy of the Representation
Correctness of the Operations

The General Approach
Weakest Preconditions for Dereferenced Assignments
Further Reading

SPACE REQUIREMENTS

Static Space Requirements

Dynamic Space Requirements
Space Requirements in Block-Structured Languages
Dynamic Data Structure Allocation

xiii

264
265
265
266
268
274

274

275
275
279

280
280
283
283
284

285
285
287
288
288
290
292
293
294
295
296

297

315

316
317
319
320

322
324
326

329

330

333
334
334

Xiv Contents

12.3
12.4

CHAPTER 13
13.1

13.2

13.3

13.4

CHAPTER 14

14.1
14.2
14.3
14.4
14.5

14.6

CHAPTER 15

15.1
15.2
15.3

Design Decisions and Representation Trade-Offs
Further Reading

Part Three/The Interaction of
Control and Data

MODELS OF COMPUTATION AND GRAMMARS

Pushdown Automata

DPDA’s and NDPDA's

Limitations of PDA’s

Turing Machines

Definition of a Turing machine
Interpreters and Universal Turing Machines
Computability

Metalanguages and Productions
Backus-Naur Form (BNF)

Classes of Languages

BNF Description of Type 3 Languages
Embedding

Parse Trees

Ambiguity

Further Reading

RECURSION AND RELATED TOPICS

Dynamic Data Types
Recursion

The Power of Recursion
Divide-and-Conquer

Recursive Operations on Dynamic Types: Tree Walking

Alternative Orders and Some Notation
Search Trees
Other lterative Tree Walks

Further Reading

THE INTERPRETATION OF IDENTIFIERS

Scope of Identifiers, Revisited
Extent of Storage, Revisited
Binding Identifiers to Values
Call-by-Value

Call-by-Address
Call-by-Value/Result

336
337

339

341

342
343
348
349
350
352
352

354
356
357
359
361
362
364

364

375

376
376
379
381

384
385
387
389

390

397

397
401

403
405
406
406

15.4

CHAPTER 16

16.1
16.2
16.3
16.4
16.5
16.6
16.7

16.8
169

CHAPTER 17

17.1
17.2
17.3

CHAPTER 18

18.1
18.2
18.3
18.4

18.5

CHAPTER 19

19.1
19.2

Contents

Call-by-Result
Call-by-Name

Further Reading

RUNTIME REPRESENTATION OF HIGH-LEVEL
LANGUAGES

Languages with Static Storage Management
“Stack-Based’’ Languages

Up-level Addressing and the Display

Array Allocation

Block Structure

Procedure Parameters

Parameter Mechanisms
Call-by-Value
Call-by-Address
Call-by-Value/Result
Call-by-Result
Call-by-Name

Heap Allocation
Further Reading

REASONING ABOUT RECURSION

Proving Recursive Programs
Structural Induction
Further Reading

ANALYSIS OF RECURSIVE ALGORITHMS

Examples of Cost Functions for Recursive Programs
Familiar Recurrence Relations of Mathematics
Solutions to Example Cost Functions

A General Rule for Solving Divide-and-Conquer
Recurrences

Further Reading

Part Four/Case Studies

USING FSM'S IN PROGRAMMING: AN EXAMPLE

Background
The Problem

Xv

406
407

407

415

415
417
418
423
423
424

425
425
426
426
426
426

427
428
433
433
435
436
439

440
441
441
443

443

447

449

449
450

xvi Contents

19.3

19.4

19.5

19.6

19.7

CHAPTER 20

20.1
20.2

20.3

204
205

A Solution Based on FSM’s
A Generalization of FSM’s
Organizing the Lexical Analyzer

Abstract Program for the Solution
An FSM Interpreter
Tables to Drive the FSM Interpreter

Concrete Program for the Solution
Declarations for Concrete Solution

Main Program

Implementation of Action Primitives

Input Format for Tables

Initializing the FSM

Procedures for Input and File Manipulation
Sample Run

Correctness of the Lexical Analyzer

Verifying Properties of Individual Components
Verifying Properties of the FSM Interpreter
Verifying Properties of the Entire System

Performance of the Lexical Analyzer
Cost of Initialization

Cost of Simulation

Total Cost

FAST IMPLEMENTATION OF SETS: AN EXAMPLE

Background

The Problem
Operations on the Set Type

An Implementation Using Lists and Trees
Representing Sets with Trees

The Problem of Deleting Elements
Representing Sets with Lists

A Combined Representation

Using the SetofElts Type

Programs for the Solution
The Data Structure
FindElr: An internal routine
The Operation Clear

The Operation Remove
The Operation Insert

The Operation IsEmpty
The Operation /sSubser
The Operation Union

The Operation Intersect
The Operation Compact
The Operation Copy

451
452
453

457
459
460

462
462
463
464
464
466
467
469

469
469
471
474

475
476
477
479

483

483

484
484

486
486
488
488
488

490

491
491
492
495
495
496
498
499
499
500
500
501

20.6

20.7

20.8

CHAPTER 21

211

21.2
21.3

21.4

CHAPTER 22

221
2222
223

224
225
226

CHAPTER 23
23.1

Contents

Correctness of the SetofEits Type
Representation Mapping
Invariants

Initialization

Correctness of Operations

Performance of the SetofEirs Type

Speed of the SerofElts Type

Space of the SerofEits Type

Choosing a Representation

Differences and Constraints

Time Comparison for Set Implementations
Space Comparison for Set Implementations
Criteria for Choosing an Implementation

GENERATORS: WRITING LOOPS THAT OPERATE ON
SETS

Loops that Operate on Set Elements
Specifications for Generator Type

A Solution for the Implementation with Threaded Trees
Programs for the Solution

The Data Structure
Loop Control Operations

Reimplementation of Set operations
The Operation IsSubset
The Operation Union

FORMULA MANIPULATION: AN EXERCISE IN
DEFINING A DATA TYPE

Some Definitions
The Abstract Type Expression

Solutions to the Original Problems

Reading Expressions

Printing Expressions

Differentiating Expressions

Examples

Implementation of the Expression Data Type
A Performance Problem and its Solution

Summary

PRODUCTION SYSTEMS AND SIMPLIFICATION

Production Systems
Patterns

Replacements

Ordering of Productions

Xvii

501
502
503
503
504
505
506
508
509
509
510
511
511

519

519
520

521

523
523
523

525
525
525

529

529
532

534
534
535
536
537
538
539

543

549

550
551
552
553

xviil Contents

23.2

233
234

APPENDIX A

Al
A2
Al

APPENDIX B

B.1
B.2
B.3

APPENDIX C

APPENDIX D

D.1
D.2
D.3
D4

APPENDIX E

E.l
E2
E.3

Extending the Type Expression with Patterns and
Replacements

Extensions to the Specifications of Expression

The Routine ApplyProductions

Implementing the Extended Expression Type

A Simplification Routine
Summary

REFERENCES

GLOSSARY AND NOTATION

Standard Mathematical and Logical Notation
Standard Definitions from Discrete Mathematics
Notation Introduced in the Text

STANDARDS FOR EVALUATING PROGRAMS

Introduction
Programs Are Read by People

What s Involved in Presenting a Program Well?
Program Organization

Comments and Other Documentation
Programming Style

Efficiency and Clarity

Making Reasonable Decisions about Peripheral Matters

Selection of Test Data
THE EXAMPLE PROGRAMMING LANGUAGE

A SIMPLE COMPUTER

The Memory Unit
The Input-Output Unit
The Central Processor
An Instruction Set

COLLECTED PROGRAMS FROM PART FOUR

Lexical Analyzer
The Types SetofElts and SetGen
Differentiator and Simplifier

INDEX

555

555
556
558

559
562

565

5N

571
572
573

577

517
578

578
579
580
581
582
582
583

585

587

588
589
589
590

593

593
597
602

609

