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Preface

This textbook is designed to support an intermediate-level course in
computer science. It is intended for students who have at least one or two
semesters of programming and problem-solving experience and who wish
to prepare for more advanced topics in computing. Ideally, the students
will also have a semester’s background in discrete mathematics.

The content and organization of the textbook was motivated by a
single premise—that programming is an engineering discipline. Like other
engineering desciplines, programming is concerned with building things,
particularly real things of enormous practical importance. And, like other
engineering, good programming is rooted in the application of science.
Understanding that science is essential to being a good programmer.

This textbook is also an introduction to the science that underlies
good programming. Many of the concepts involved are mathematical.
Software concepts such as program organization, data structures, perform-
ance analysis, and so on, have traditionally been taught only as
programming techniques. In this textbook we support these programming
techniques by relating programming ideas to the underlying mathematical
concepts of automata, formal languages, data types, and so on. Through
examples we illustrate the relation and utility of the mathematical concepts
to practical contexts.

Much of the material presented in this textbook has traditionally been
taught (in greater depth) in advanced undergraduate and graduate courses.
We believe, however, that it is both necessary and appropriate to introduce
this material at an early stage. Just as introductory calculus and physics are
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prerequisite to most engineering courses, the material presented here
forms an appropriate background for courses in software engineering and
advanced computer science. For the organization of this material, see the
matrix on page 8 and the discussion immediately preceding it.

Using the Book

We originally designed this textbook for a second course in computer
science, and since 1974 have used various generations of it for a
one-semester sophomore course. One semester is not enough to cover all
the material now contained in the textbook, but in a semester we can
generally cover most of Parts One and Two and the theoretical material in
Part Three. We also cover several of the example chapters in Part Four.
Homework usually involves substantial programming exercises. Although
we are aware that this is a large amount of material to cover in one
semester, we have not observed that our students have any great difficulty
with the level of the material.

Although we strongly believe that the material in the textbook is best
presented early, that is in a second course in computer science, there are
other ways that the book can be used. For example,

» As the basis of a two-semester course: This textbook contains ample
material for a full-year course. In such a course, however, we would
not only cover this material, but also emphasize advanced program-
ming techniques and more advanced data structure representations.

» Merged with a software engineering course: Most of the material in
this text is among the formal prerequisites for a rigorous treatment of
software engineering. Half of a third or fourth year course in software
engineering might profitably be spent on the chapters about formal
models, specification, verification, and performance analysis.

s Incorporated into a theoretical computer science course: Much of the
material in this course is predicated on a knowledge of discrete
mathematics and formal logic and therefore constitutes a meaningful
application of these formal mathematical ideas.

s As in-house training material for practicing programmers: Most of
today’s practicing programmers were educated when computing was
little more than a collection of tricks. That’s no longer the case. In
order to compete with the recent graduates, the experienced
professional will need to master the material we cover—especially the
more formal material.
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The language used throughout this book is essentially PASCAL. The
material we cover, however, applies to programming in general, rather
than to any particular language, and so we have felt free to deviate from
PASCAL from time to time in presenting some material. Appendix C
summarizes the major deviations. The programs in the example chapters
have all been executed with a PASCAL compiler for the DEC PDP-10
originally developed at the University of Hamburg, Germany. We have,
however, tried to avoid including in our examples any statements peculiar
to that compiler.

Computer Science has made enormous advances in the past 10 to 15
years. It is no longer simply an art or an ad hoc collection of programming
tricks. There is now a genuine body of science and mathematics that the
programmer of the future must know and use. This book is hardly the last
word that will be written on the subject, but it is a good beginning for new
students and a sourcebook for the experienced professional.
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