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EDITOR'S PREFACE

In recent years there has been a considerable increase in the application of
thermodynamic techniques to biochemical and biological problems, The objective
of this book is to present in a single volume accounts of some of these thermo-
dynamic studies, The topics range from work on simple molecules of biochemical
importance and macromolecules of biological origin to cellular systemsand meta-
balism, It should be noted that at the present time not all these aspects of
biochemical thermodymnamics have reached comparable levels of development thus
work on cellular systemsis in its infancy compared with the degrees of sophist-
ication which can be achieved with small molecule systems. Similarly of the
important biological macromolecules, proteinsand nucleic acids have received

more attention than polysaccharides,

My initial vision of this volume consisted of a spectrum of chapters commencing
with a rigorous treatment of the simple molecules and progressing to the more
complex problems of specialized structures and concluding with an appraisal of
the application of thermodynamics in metagolism. I am greatly indebted to all
the contributors who have willingly given their time and effort to make this
vision a reality and who have cooperatgd with me so readily, I thank Dr, H.A.
Skinner of the Department of Chemistrf‘at Manchester for his encouragement and
also for his assistance with the editing of Chapter 3, Miss Margaret Barber for
typing the first drafts of Chapters 1, 6 and 10 and for general secretarial

assistance and Mr, Richard Littlemore for photographic work,

Fimally it is a pleasure to acknowledge the vital part played by Mrs, Irma
Farnsworth who undertook the difficult task of producing the camera-ready copy;
her help and great attention to detail has been invaluable, she brought to my
notice many inconsistencies in the text which otherwise would have been over-

looked,

Despite every effort to. produce a perfect copy I take full responsibility for

any remaining errors in the text, I regret that while being well aware of the '
recommendations for measurement and presentation of biochemical equlibrium data

prepared by the Interunion Commission on Biothermodynamics (Biochemical Journal

(1977) 163, 1), as a consequence of contributors reproducing material fram orig-

inal sources it has not always been possible to use exclusively SI units through-

out the text, For these shortcomings I beg the readers indulgence.

Manchester June 1978 Malcolm N, Jones
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THE SCOPE OF THERMODYNAMICS IN BIOCHEMISTRY CHAPTER 1

M. N. JONES
Department of Biochemistry, University of Manchester, Manchester M13 9PL, U.K,

1, INTRODUCTION

Biochemistry may be defined as the study of living organisms at the molecular
level, It is concerned with the chemical composition and structure of the mole-
cules and ions of which living matter is composed and the way in which these mo-
lecular species are synthesised, arranged in the organism to form structural ent-
ities and the way in which they can react to maintain the integrity of the orga-
nelles, cells and tissues of the many millions of living species which have esvol-
ved,,It is a relatively modern science since understandably some of the major de-
velopments in the subject have depended heavily on prior progress in pure chem-
istry, bielegy and physics, An obvious example of this is the application of X-
ray diffraction to determine the structure of proteins and nucleic acids, Devel-
opments in X-ray diffraction and metheds of isolating and characterising macro-

molecules from living organisms being essential prerequisites.

Classical thermodynamics is concerned with the conversion of one kind of energy
into another and with the relatiunships between experimental quantities pertain-
ing to systems at equilibrium., It forms the basis for quantifying the effects of
temperature, pressure anc concentratmon on the positions of chemical equilibria,
It is not concerned with the rate at which processes occur, Time has no place in
classical thermodynamic coﬁéideratinns but is introduced under the separate head-
ing of 'non-equilibrium' or 'irreversible' thermodynamics, Furthermore, thermo~
dynamic relatioﬁéhips are independentiqf assumptions regarding the molecular nat-
ure of matter and in a rigorous sense tell us nothing about the mechanisms of
chemical or biochemical reactions but only the changes which occur on going from
initial to the final states. Nevertheless in the hands of physical chemists the
concepts of Gibbs free energy, enthalpy and entropy applied to individual atomic
and molecular species in precisely defined standard states have played and con-
tinue to play key roles in the understanding of the energetics of chemical react-

ions and other physico-chemical processes.

Living systems are dynamic in nature consisting of a multitude of interrelated
and interdependent biochemical reactions which -are not in general at equilibrium

but more often are in a steady state. If we consider a particular organism such
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’ as\a cell as a thermodynamic system then we find immediately that our system is,
in rigorous thermodynamic terms, 'open'; it is exchanging matter and energy with
its surroundings, Open non-equilibrium systems are the province of irreversible
thermodynamics and at present the applications of this science to biochemistry
have not been very numerous., These observations may lead one to the view that
classical thermodynamics might have rather a limited role to play in biochemistry
and in fact this view has been expressed in the literature (Banks, 1969), How=~
ever it is noteworthy that of necessity the vast majority of 'chemical! reactions
which are carried out are not under conditions of constant temperature and press-
ure nor are they maintained in a state of equilibrium and yet thermodynamics has
become an invaluable tool in pure chemistry., Likewise in biochemistry there has
developed a field concerned with the study of biochemically important processes
by the application of classical thermodynamics, Such studies discussed in detail
in subsequent chapters range from the thermodynamics of small molecules of bio-
chemical significance (Chapter 2}, studies of the important macromolecules in
living systems such as proteins (Chapter 3), nucleic acids (Chapter 4), polysac-
charides (Chapter 5) to subcellular organelles such as membranes (Chapter 6).
Cellular systems are the subject of Chapters 8 and 9 and the over all thermody-
namics of metabolism is dealt with in Chapter 11, Analyses of the complexity of
the all important binding of oxygen to haemoglobin and the thermodynamic aspects

of muscle contraction are the sujects of Chapters 7 and 10 respectively.

2, THE THERMODYNAMIC APPROACH

It is not the purpose of this introductory chapter to go into the exhaustive de—
tail of either the basis of classical thermodynamics nor of its numerous applic-
ations in biochemistry which are dealt with in the succeeding chapters., It is of
interest however to briefly outline the general thermodynamic approach and to
draw attention to some significant developments in experimental techniques and

to some of the particular difficulties associated with biochemical problems.

In broad terms thethermodynamic description of a process involves the determin-
ation of the Gibbs free energy change AG, the enthalpy change, AH, and the entr-
opy change, AS, for the process under specified conditions, The use of Gibbs free
enefgy is appropriate under conditions of constant temperature and pressure sin-
ce under these conditions if a process occurs spontaneously (i.e. irreversibly)
then AG will be negative, This is the basis for assessing the thermodynamic fea-
sibility of a process at constant temperature and pressure. A reaction in which
the frees energy change is large and negative will, assuming it is kinetically
feasible, have an equilibrium on the side of the products, The equilibrium will
favour the reactants if the free energy change is large and positive. For a sy-

tem at equilibrium AG = 0, The calculation of AG for a particular process gener-

v
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ally involves the measurement of concentrations under given conditions and the -

application of an equation of the form

[s]

26 = 86° + RT 1n Top (1)

We,

in which TTCp and TTEI refer to the products of the concentrations of 'products!
and 'reactants' respectively, each raised to the appropriate power as required
by the stoichiometric equation for the process, Eq.{(l) assumes the reactants and
products behave ideally, if this is not so then activity coefficients must be

introduced, When the system is in equilibrium AG = 0 and hence

2G° = —RT ln(TrCE) = - RT 1n K (2)
1TCr
eq

where the concentrations are those pertaining to the equilibrium state from which *

the equilibrium constant K can be calculated, AG® refers to the Gibbs free ener-
gy change for the formation of the products in their standard states from react-
ant in their standard states, For condensed systems such as solutions the stand-
ard state depends on the concentration-scale adopted., Conventionally, a one molar
hypothetical ideal solution is often used, Measurement of the equilibrium con-
stant K)for any given prncass thus gives us directly a-value of AG°, Since AG°

is related to the correspondlng standard enthalpy and entropy changes by the

equation

0 o o

AGT = OHT - TAS (3)

measurement of either AH® or AS® enables all three parameters to be obtained, M
is*the quantity readily amenable to experimental measurement either directly by

a calorimetric method or indirectly from the temperature coefficient of the equi-

- librium constant by use of the Gibbs-Helmholtz equation

AG

e = {95 R{aan (4)
31 9 /T
Tp P

For many systems particularly biological ones application of eq.(4) to give the
so-called van't Hoff enthalpy is hampered by the limited temperature range avail-
able over which K can be measured, This problem is discussed in more detail in
Chapters 2 and 3. For example, for processes involving proteins in aqueous sol-
ution which are susceptible to denaturation at temperatures much above the phy=-

siological temperature a working range of ~0-50" is all that can be utilized,




This severely limits the precision with which MC® can be obtained by use of eq.
(4), For this reason direct calorimetric measurements are often to be preferred

for the determination of enthalpy changes,

2,1 Calorimetry

It is an interesting historical fact that one of the earliest biochemical calo~
rimetric experiments was done by lLavoisier in collaboration with the mathemati-
cian and astronomer Laplace, These experiments were inspired by the idea that
respiration could possibly be likened to a combustion process so that the heat
produced on exhalation of a known amount of carbon dioxide by an organism should
be equal to that produced by oxidation of the corresponding amount of carbon.
The experiments were done in 1782-83 and involved measuring the amount of ice
melted and C02 produced by a guinea pig over a givep time period (10 hrs) and
comparing this with the heat produced over the same time period on combustion

of the equivalent amount of carbon., The experiments did not however support the
initial hypothesis, more heat was produced by the guinea pig for a given amount
of exhaled carbon dioxide than was produced on combustion of the carban. At the
time Lavoisier suggested that the chilling effect of the ice increased the heat
output of the guinea pig and modified his results accordingly, whereas the cor-
rect explanation which he later proposed is that the animal exhaled less carbon
dioxide than would be predicted by the measured amount of inhaled oxygen (Culot-
ta, 1972). These early experiments were the first steps into the field of the
energetics of metabolism, The total energies involved in the experiments corres-
ponded tathose required to melt about 15 ozs (435g) of ice, which is of the or-

der of 140 kJ or 14 kJ hr =,

The impetus to develop very sensitive calorimeters followed the discovery of
radioactivity. Thus Pierre Curie developed a twin Dewar vessel 'microcalorimeter!
in 1903 which he used to measure the heat output from radium bromide (~ 400 J
g-l hr-l). The use of the twin system in which the process of interest is carr-~

ied out in one vessel (the sample vessel) while unwanted heat effects are com-

‘pensated for in an identical reference vessel was a feature of many subsequent

designs of calorimeter and is still of great value, Over the years many designs
of sensitive calorimeters were used, a very notable advance was made by Calvet

who developed the twin cenduction microcalorimeter which is commonly used today
(Calvet, 1958). With this type of instrument it is possible tc measure enthalpy

changes of only a few md,

There is little doubt that the commercial development of microcalorimeters ini-
tially by Beckman based on the design of Benzinger (1965) and by LKB~-Produckter
based on the design of Wadsg (1968) have been of immense value in transferring

the precise measurement of small enthalpy changes onto a more routine basis,




This has been of particular value in the area of biochemical “microcalorimetry i
because of the limitations which are often imposed by the availability of many
biological materials, The modern physical biochemist now has a wide choice of
microcalorimeters which can be used to study the thermodynamics of biological
systems (Reid, 1976). Nevertheless, the study of such systems often stretches
the equipﬁsnt to tBe limit of its sensitivity and also presents the biochemist
with challenging problems of experiment control and design. To illustrate some

of these problems it is useful to consider some specific examples,

2,2 Thermodynamics of binding to membrane-bound proteins

Studies on membrane systems are the subject of Chapter 6, The main purpose of
this section is to illustrate some of the idiosyncrasies of thermodynamic meas-
urements on biological systems. The choice of membrane protein-ligand interact-
ion is partially a consequence of the authors interest in the subject and parti-
ally because the problem can perhaps be regarded as being fairly centrally placed

in the spectrum of studies represented at one end by measuresments on precisely

ORI

defined systems consisting of completely characterised molecules and at the other

e

end by whole organisms,

The 'lac operon' of E,coli has a special place in the main stream of biochemistry,
since it represents the classical example of enzyme regulation and control, Ac-

cording to the model of Jacob and Monod (1961) the 'lac operon' consists of three

e i itk 4

closely linked genes which code for three enzymes, thiogalactoside transacetyl-
ase, (3 -~galactosidase and the galactoside permease responsible for galactoside
transport across the E,coli membrane - the so-called M-protein, The synthesis

of the three enzymes is under the control‘of an operator gene which can be
blocked with a repressor protein resulting in inhibition of transcription. In

the presence of an external inducer which combines with the repressor protein,
the operator gene is unblocked and enzyme synthesis can proceed. Amongst the var-
ious strains of E,coli are those designated as i* which in the absence of galac-
toside inducers have low levels of the three enzymes whereas as i strains norm-—

ally have high levels aof the enzyme but are not inducible,

The synthesised M-protein is incorporated into the cell membrane where it actu-

ally transports galactosides, Belaich gt al. (1976) have investigated the ther- 1
modynamics of the binding of thiodigalactoside, TDG (D-galactopyransoyl-p-thia-
galactopyranoside) to the M-protein using equilibrium dialysis and microcalori- i
metry, Equilibrium dialysis was used to measure the binding of TDG toc the M-pro-~ ;i
tein from which the equilibrium constant, K, and hence AG° for the reaction §
M+ TDG == M,TDG (5)

was obtained and AH was measured by microcalorimetry,
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It would be impagdﬁbls to determine either K or AH using suspensions of whole E,
coli since clearly TDG could conceivably bind and react with other cellular pro-
teins as well as the M-protein. Since the solubilization and purification of the
M-protein has not yet been achieved the experiments were carried out on prepara-
tions of membrane vesicles which can be produced by either lysozyme-ethylenedia-
minetetraacetate treatment or sonication, Thus the environment of the M=protein

is the bilayer membrane of the vesicles and from the nature of the preparation

we might expect it would not be the only protein present in this form,

From the chemical point of view the suspensions are very heterogemeous, It is
thus of great importance to establish that the measurements being made correspond
to the process represented by eq.(5).Choice of the correct control experiments is
clearly essential, The measurement of the equilibrium constant by equilibrium
dialysis involves equilibrating tritium labelled TDG against a membrane vesicle
suspension; from the known total amount of TDG in the system and the measured

free TDG concentration, (TDG)_, the bound TDG concentration (TDG)b can be calcu-

f!
lated and related to the equilibrium constant for the above reaction by the equ-

ation,

$ - [me], - P08 (6)

Ml K, + [TD6 1,

where ¥ is the average number of moles of TDG bound per mole of M=protein, n is
the number of moles of binding sites per mole of M-~protein and Kd is the dissoci-
ation constant for the complex M,TDG, Eq.{(6) is based on the Adair equation for

multiple equilibria involving n identical independent binding sites (Adair,1925),
Rearrangement of eq.(6) gives

1 K . 1 + 1 ‘ 7

_ = d
(18], n[Ml;  [TDal, n[M];

The double reciprocal plot based on eq.(7) gives Kd from the slope/intercept.
The intercept gives the number of moles of binding sites per dm3 of the memﬁrane
vesicle suspension if [M]T is in moles/dma. Since the molecular weight of the
M-protein is not known [M]T cannot be calculated and n[M] must be expressed

either as sites/dm3 or sites/mg of membrane protein,

Returning now to the problem of suitable controls, since the level of M-protein
. L+ . R X

in the i strains of E,coli should be low in the absence of inducers it is poss-—
ible to compare directly the binding of TDG to vesicles prepared from the mem~

branes of induced and non-induced i* E,coli; isopropyl-P -thiogalactopyranoside




is a suitable inducer, Fig.,l shows the binding of TDG to three cell strains,

bound (TDG ] M
4

2105 B

103

10- N N c, free [TDIG]M
105 10 210°¢ 31074 4307

Fig,l Binding of thiodigalactoside to membrane vesicles. Curve A E,coli (i7),
curve B E,coli (i’) induced and curve C E,coli (i*) not induced, (Belaich
et al., 1976). Reproduced by permission of the American Society of Biolo-
gical Chemists, Inc, and the authors,

It can be seen from the curves that membranes derived from induced and constit-
utive strains (i”) have binding sites which can be saturated while those derived
from non-induced strains do not bind any significant amount of TDG, This is ex-
cellent confirmation that the binding process is concerned exclusively with the

M-protein,

A further complication could arise if the binding observed corresponded only to
binding to M-protein exposed on the outside of the membrane vesicles, however
under the conditions of the experiments which included the addition of sodium
azide to the buffer system and in the absence of an energy source it has been
shown that the Km for entry and exit of galactosides in cells are equal and
hence it is safe to assume that the concentration of TDG is the same on the out-

side and inside of the vesicles,

Turning now to the measurement of AH for the binding process, the measurements
can be made using a batch twin cell microcalorimeter by mixing a suspension of
vesicles containing membrane protein with a TDG solution in one vessel and a
similar suspension with buffer in the reference vessel, In principle if all the
amounts are carefully adjusted the enthalpy of dilution of the vesicles in the
two vessels should cancel and if the enthalpy of dilution of the TDG is measured
in a separate experiment then the enthalpy of binding of the TDG can be calcul-
ated,




