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Preface

We present here the transcripts of lectures and talks which
were delivered at the NATO ADVANCED STUDY INSTITUTE "Electrons in
Disordered Metals and at Metallic Surfaces" held at the State
University of Ghent, Belgium between August 28 and September 9, 1978.

The aim of these lectures was to highlight some of the current
progress in our understanding of the degenerate electron 'liquid'
in an external field which is neither uniform nor periodic. This
theme brought together such topics as the electronic structure at
metallic surfaces and in random metallic alloys, liquid metals and
metallic glasses, As is the case in connection with infinite order-
ed crystals, the central issues to be discussed were the nature
of the electronic spectra, the stability of the various phases
and the occurrence of such phenomena as magnetism and supercon-
ductivity.

In the theoretical lectures the emphasis was on detailed rea-
listic calculations based, more or less, on the density functional
approach to the problem of the inhomogeneous electron liquid. How-
ever, where such calculations were not available, as in the case
of magnetism in random alloys and that of metallic glasses, sim-
pler phenomenological models were used.

The theoretical discussions were balanced by reviews of the
most promising experimental techniques. Here the stress was on
results and their relevance to the fundamental theory. Moreover,
the attention had centered on those experiments which probe the
electronic structure in the greatest detail.

While the individual contributions are selfcontained accounts
of the relevant topics, and no effort has been made to standardize
the notations all through the text, cross references are frequent
and each is written with evident awareness of the unity of the
subject. It is hoped that by bringing together a variety of efforts
to deal with the same underlying problem, namely the lack of crys-
talline symmetry, they would illuminate each other. Furthermore,
the juxtaposition was also intended to call attention to the inter-
esting variety of phenomena such broken symmetry can give rise to.
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Unfortunately Professor Soven, Dr. Pendry and Dr. Bergmann,
whose lectures contributed much to making the summerschool a ba-
lanced discussion of the subjects at hand, were unable to prepare
their lecture notes for publication. Nevertheless, we have inclu-
ded a short summary of their contributions together with useful
lists of suggested readings at the end of this volume (p.553).

The Advanced Study Institute was financially sponsored by the
NATQ Scientific Affairs Division (Brussels, Belgium). Co-sponsors.
were the National Science Foundation (Washington, D.C., U.S.A.),
the Department of Higher Education and Scientific Research of the
Ministry of National Education and Culture (Brussels, Belgium),
and the Faculty of Sciences of the State University of Chent. In
particular we are indebted to Dr. T. Kester of the NATO Scientific
Affairs Division, Prof. Dr. J. Hoste, President of the University
of Ghent and Prof. Dr. R. Mertens, Dean of the Faculty of Sciences.

We are grateful to all lecturers for their most valuable con-
tribution and their collaboration in preparing the manuscripts.
Thanks are also due to the members of the International Advisory
Board : F. Abeléds (Paris, France), S. Berko (Waltham, Mass., U.S.A.),
W. Dekeyser (Ghent, Belgium), H. Ehrenreich (Cambridge, Mass.,
U.S.A.), J.S. Faulkner (Qak Ridge, Tenn., U.S.A.), V. Heine
(Cambridge, U.K.), S. Lundqvist (Gothenburg, Sweden) and W. Plummer
(Philadelphia, Pa., U.S.A.).

The Institute itself could not have been realized without the
enormous enthusiasm of all participants and lecturers and without
the untiring efforts of our co-workers Mr. R. Rotthier and Mr. P.
Van Steenberge at the "Seminarie voor Theoretische Vaste Stof- en

Lage Energie Kernfysica". Also, Mrs. A. Goossens-De Paepe's help
in typing the manuscripts is gratefully acknowledged.

P. Phariseau
B.L. Gyorffy

L. Scheire

Ghent and Bristol, December 1978
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THE DENSITY FUNCTIONAL THEORY OF METALLIC SURFACES

0. Gunnarsson

Institut flr FPestkorperforschung der Kernforschungs-
anlage Julich, D-5170 Julich, F.R.G.

Institute of Theoretical Physics

8-112 96 Goteborg, Sweden

1. INTRODUCTION

Most calculations on clean surfaces and surfaces with chemi-
sorbed atoms or molecules can be divided into two classes. In the
first, one constructs a model Hamiltonian, for example for chemi-
sorption systems the Anderson model |l|is often used. Usually the
model is fairly simple and well suited to give a conceptual under-
standing of important features of the system as well as an indica-
tion of the importance of many-body effects[Q{ In the second class
one uses the density-functional (DF) formalism |3 hl or the Xa
method |5|, whieh can be considered as a special case of the DF for-
malism. In this approach, ground-state properties are obtained by
solving a Hartree-like equation (Eq. (10) below)

.2
(-2 w2 w v o (6)) u(r) = e v () (10)

The relative simplicity of this equation makes it possible to use

a fairly detailed and specific description of the system, without
obtaining an unmanageable problem. The crucial quantity in Eq. (10)
is v ) which, in principle, contains all many-body effects. As
a 31mpfe approximation for v (r), the so-called local density (LD)
approximation, has been foung to give generally good results, the
method has become very popular. A detailed discussion of the DF
formalism and the LD approximation is given in section 2.

The DF formalism has been applied by Lang and Kohn to the so-
called planar uniform background model of a surface. They calculated
properties such as the charge density, work function and surface
energy and obtained good agreement with experiment (in the case of

1



2 0. GUNNARSSON

the surface energy the model needed to be refined slightly). Recent-
1y, models have been developed which take the atomic structure of
the surface nmore explicitly into account. IHowever, the simpler cal-
culations of Lang and Kohn are still of great importance for our
understanding of the surfaces of simple metals, and are described

in section 3.

The planar uniform-background model has been used by Lang and
Williams and by Gunnarsson, Hjelmberg and Lundgvist to describe
chemisorption of atoms on simple metals. In section 4 selected
results for H, Li, Si, Cl and Na chemisorbed on Al, Mg and Na are
discussed.

2. THE DENSITY FUNCTIONAL FORMALISM

2.1. Basic Theorems

The DF formalism is based on two papers by Hohenberg and Kohn
|3] and Kohn and Sham |4|. The basic quantity in this theory is the
electron density n(r), and we will first show the relation between
the density and other ground-state properties. Assume that N inter-
acting electrons are moving in an external potential v(g), for
instance the potential of the nuclei of the system. The Hamiltonian
is

H=T+U+V |,

where T is the kinetic energy operator, U is the electron-electron
interaction term and V is the external potential operator corre-
sponding to the potential v(r). In principle, the corresponding den-
sity n({) can be calculated. Thus for a given potential v(g) the
density is uniquely determined. The converse statement is less triv-
ial, but has been proven in the following way |3(: Assume that the
same density is obtained for a different potential v'(x) which dif-
fers from v(r) by more than a trivial constant. The ground-state y'
for the potential v'(x) is different from the ground-state ¥ for
the potential v(g), since they satisfy different Schrddinger equa-
tions. If the ground-state is nondegenerate |6|, the expectation
value of the Hamiltonian has its lowest value for the exact ground-
state wave function and

B! <¢'|H'|¢'> < <¢‘|H'l¢> (1)

<Y|H+V'-V[y> = E + [ [v'(g)-v(g)] n({) adr

However, the primed and unprimed quantities can be interchanged
giving

E<E +/ [vx) - v'(x)] n(g) &% (2)
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Adding (1) and (2) we obtain

E+E' <E + E!

which disproves our assumption that there are two potentials v(r)
and v'(r) (differing by more than a constant) which give the same
density n(x). Thus there exists only one v(g) which gives rise to
the density n(g), and v(r) can be considered a functional of n({)
|8]. Once V({) is known { can, in principle, be calculated and all
ground-state properties can be determined. It follows that all
ground-state properties are functionals of the density, which is
one of the basic results.

Examples of such functionals are the kinetic and electron-
electron interaction energies and we call their sum F(n]

F[n] = <y |T +U]| > (3)
For a given potential v(w) we define
E [n] = 7 v(g) n(g) a3 + F[n] (%)

For the correct ground-state density n({) the functional E [n] is
equal to the ground-state energy E. This is actually the 1owest
value E [n'] can obtain for any density n ({) having the correct
number of electrons

S n'(x) a3r = N (5)

This variational principle is proven as follows |3]: Consider =
state P! which is not the ground-state of H. Then

5, [x]

<p|H|Y> < <p'[H|p'> (6)
<y |V+T+U Y>> = S v(x) n'(x) adr + F[n'] = Ev[n'J

where we have used the definition (3).

To summarize, we have shown that there exists a universal (of
v(r) independent) functional F[n] which gives the total energy via
(4) and that the functional F_[n] in Eq. (4) has its minimum
for the correct ground-state denthy. This gives us & general method
for calculating ground-state properties: (a) Find an approximate
functional F[n] and (b) minimize Ev[n].

An example of this approach is the Thomas-Fermi method 9],

in which it is assumed that the electrons are independent and that
the kinetic energy density is the same as for a homogeneous medium.

Then we obtain )
n(x) nl(g')
P =5

where C is a numerical constant. To minimize Ev[h], we use the cor-

a3r a3r' + C S [n({)]5/3 adr
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responding Euler equation which in this case is the well-known
Thomas-Fermi equation |9l

2.2. Derivation of a Hartree-like Eguation

Although the Thomas-Fermi method gives a qualitative picture
of, for instance, an atom, it is too crude for detailed quantita-
tive calculations. Actually, to find good approximations for the
functional F[n} is very difficult and the method introduced by
Kohn and Sham |4| is therefore of great importance. They realized
that it is possible to separate (numerically) large contributions
to F]n’ which can be treated exactly, so that only the smaller re-
minder has to be treated approximately. Thus they used the parti-
tioning

> n(x) n(g")

E [n] J V({ ({) +§ f _W d3r d3rl (7)
+ T [n] + E [n]
S Xc

The second term is the electrostatic interaction energy and the
third is the kinetic energy of noninteracting electrons with the
density n({). The final term is the exchange correlation energy,
which would be zero if the electrons were noninteracting. For in-
teracting electrons it contains all the many-body effects. The
density is now varied under the constraint

I Gn({) a3r =0

to find the minimu? Tf Ev[n]. We obtain the Euler equation
8T |n

s osn(x) { E?{—) +v_po(x) } &3 =0 (8)
with []
n(g') SE_ |n

Vere() = V(E) + € S iy @' gy (9)

Kohn and Sham observed that Eq. (8) is identical to the equation
for noninteracting electrons moving in the potential v (x).
Therefore we can solve Eq. ( 8) by using the Hartree method

2
- v (x) (10)

AV Y]

v (r) ]2 (11)

{ v+v (;;)}w(;;)=

) =

n(

€

N
T z
’\J 3

v=1

For a given functional Exc[n] Eqs. (9)-(11) are solved by a
self-consistent approach; we guess a density which, via Eq. (9),
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gives an effective potential and, via Egs. (10)-(11), a new density.

It should be emphasized that this is a method for calculating
ground-state properties. The energy eigenvalues £ and eigenfunc-
tions ¢ (K) of Eq. (10) have not been shown to be excitation ener-
gies and wave functions, respectively, but are only auxiliary quan-—
tities obtained in the calculation of the density. The quantities
that can be calculated are the electron density, the total energy
and properties which can be derived from these quantities. For a
chemisorbed atom or molecule, for example, we can obtain the bin-
ding energy, the equilibrium geometry (i.e. adsorption site and sep-
aration distance), the vibration frequencies (if the Born-Oppen-
heimer approximation is used), the activation energy for diffusion
and the dipole moment.

The equation (10) is a one-body equation, i.e. the normal elec-

tron-electron interaction term

e?

L
145 TRikg]

does not enter explicitly. This is the main reason to the simplicity
of this approach. Purthermore, the potential is local, in contrast
to, for example, the Hartree-Fock potential

Vp ¥R = Vgpl(gog') wixt) @3 (12)

Actually, if the so-called local density approximation (see below)
is used for E Dﬂ Egs. (9)-(11) are not more difficult to solve

than the Hartrée equations.

The importance of the method of Kohn and Sham can be illustrat-
ed by some typical numbers. Fig. 1 shows the partitioning of the
valence contribution to the total energy for a manganese atom. The
kinetic energy, T , the electrostatic interaction between the va-
lence electrons and the core, E_ , and the electrostatic interaction
between the valence electrons, , are all treated exactly. Only
the exchange energy, E_, and the correlation energy, E , {not shown
in the figure, but subgtantially smaller than E_) requgre approxi-
mation. Note the contrast to attempts of approxfmating the fune-
tional F[n] directly, e.g., the Thomas-Fermi method, in which case
also the large term Ts is treated approximately.

The numbers in Fig. 1 do not mean, of course, that exchange
and correlation effects can be neglected. On the contrary, for the
calculation of many properties good approximations for EX and EC
are needed.
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1500 |- ] E. _

1000 |- T. -

500 | E,, .

Ex
M

Fig. 1: The kinetic energy of the valence electrons (T ), the core-
valence (E_ ) and valence-valence (E. ) electrostatic Interaction
energies and the valence exchange en¥¥gy (E.) for a manganese atom
[18|. A1l energies are given in eV, x

2.3. The Local Density Approximation

The most commonly used approximation is the local density (LD)
approximation, which assumes that the electron density variations
are spatially slow. Consider an electron at & point r in space. If
the density varies little over some typical distance, say a few
inverse Fermi wave vectors, this electron "sees" an essentially
homogeneous medium. Then we can associate an exchange-correlation
energy to this electron which is the same as for an electron in a
homogeneous medium with the density n({). For the total exchange-
correlation energy we obtain |3,L]

Eelnl= 7 n(x) e (n(y)) a3 (13)

where € (n({)) is the exchange-correlation energy per particle for

c . . . : .
& homogerieous system with the density n(r). Inserting this approxi-
mation in Eq. (9) gives us the exchange-correlation contribution to
the effective potential

GExc[n]

_ 2
vxc({) = Gn(x) 8n(£

) {n(x) exc(n({))} (1k)

This potential is not only local in the sense mentioned above (Eq.
(12)) but it has also a local density dependence, i.e. vkc(g) de-
pends on the density at the point % only.
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The LD approximation can be extended to spin-polarized systems.
The basic quantities are now the density of spin-up and spin—-down
electrons, n, (r) and n_({), respectively. We obtain 110,11,7] the
local spin density (LSD) approximation

Exc n+,n_] = f n({) ex(n+(£), n_({)) adr (15)

with obvious notation. It should be noted that Eq. (15) is not ro-
tationally invariant in spin space.

If correlation effects are neglected in Eg. (13), we get

B [o]l~ £ ap) e (a(p) a¥r =3 A3 7 @l en (6)

where €. is the exchange energy per particle of a homogeneous sys-—
tem. The corresponding potential (Eq. (14)) is
v (n(g)) = u (r) =-1.22/r Ry
where rg is given by
LA W
3 s 0 n(r)
Results for ¢ o and Vo including correlation effects have been
given in the Fteratuts |12,10,7|. For instance, in the absence of

spin polarization we have |12

v, (n(g))

B(rs) ux(rs)
B(r,) =)

1 + 0.0368 I‘s In {1 + i
The function B(r ) describes correlation effects. It has a fairly
weak dependence On r., 8s is shown in Fig. 2.

14 T T T T
k_ —
12 T
B 1
1.0 1 1 I ]

0 1 2 3 4 S 6

Fig. 2: The function B(r )} which describes the effects of correla-
tion on the exchange-corfrelation potential v o If correlation is
neglected B{r )=1 and in the Xa approximation B(r_ ) is replaced by
a constant 3a72 (after Ref. l12]). s
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A slightly different approximation, the so-called Xa approxi-
mation, was proposed by Slater ISI vho, in essence, nultiplied Lq.
(16) by a constant 3 / 2 and obtained

Exc[n]‘a %a s n(;\:) sx(n(;\:)) a3r

This approach gives the so-called Xa potential

v (a(5) =2 o w ()
The case a=2/3 is sometimes referred to as the Dirac-Gaspir-Kohn-
Sham |13,4| potential, and a=1 gives the Slater potential. Schwarz
has proposed the use of an atom-dependent value of o which for most
atoms 1s in the range 0.70-0.75 |1h|. If these values of a are used,
the Xo and LD approximations give fairly similar results for sys-
tems without spin-polarization. However, the spin-dependent version
of the Xa approximation gives a stronger spin-dependence than the
LSD approximation |15,16[ and it overestimates, for instance, the
tendency to ferromagnetism for transition metals.

As discussed below, it is not at all clear a priori that ap-
proximations (13)-(15) are valid for the systems of interest. It is
therefore of great importance that these approximations have now
been tested for a large number of systems such as atoms |1T,7,18l,
small molecules |15,19,20|, simple and transition metals |21—23|
and compounds [2h|. As examples we show in Fig. 3 the ionigzation
potential of a large number of atoms and in Fig. 4 the binding
energy, the equilibrium separation and the vibration frequency of
diatomic molecules. The molecular results are discussed in detail
by R.O. Jones in this volume.

Generally good agreement with experiment is obtained. For in-
stance, the ionization energy of atoms is typically 1/2 eV in error,
the binding energy of small molecules is correct within 2 eV and
the cohesive energy of metals within 1/2-1 eV. The errors for the
separation distance is. typically of the order 1/10 atomic unit.
Usually the results are somewhat worse for the 34 series than for
other series. This has been discussed extensively by Harris and
Jones for atoms and diatomic molecules |25|. However, the magnetic
properties of the 3d metals at zero temperatures seem to be de-
scribed well |16,21-23].

2.4. Nonlocal Functionals

In the LD approximation € ({) and v ({) depend only on the
"local" density n({). In genergf there should be a dependence on
the density at all points in the neighbourhood of r. Two such ap-
proximations were propcsed in the original papers 3,4|. The LD ap-
proximation can be viewed as the lowest order term in a gradient
expansion. Including the next term we obtain |3,4]
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Fig. 3 :The first ionization potential of atoms in the LSD and
Hartree-Fock (HF) approximations compared with experiment. The num-
bers show the atomic numbers of the atoms considered. The zero of
energy is shifted 5 eV, 10 eV and 15 eV for the second row, the
thirdlroT and the transition element series, respectively (after
Ref. [18]).

B, C, N, 0, F CO BF

x HF
0
—x LSD
° o EXP
3 \\ p
—_— [o]
1] 5 [~ x
w o )
1 y . o
10 F o °
[a]

Fig. 4 :The binding energy of first-row molecules in the LSD and HF
approximations compared with experiment. The LSD results are cal-
culated in the LMTO method |19] using a limited basis set and larger
binding energies would be obtained if the basis set were complete
(after Ref. [19]).
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(n(g)) @3 + s cn(g)) '[Z‘(‘S]) 23 adr , (18)

where C(n(r)) is a function |26| of the density. It is also pos—
sible to sum all terms which are of second order in the density
variations, giving |3,4,27|

Exc[n]z S/ n(g) €ro

(0(x))a% = 1 £ K, (gx'»n) (n(g)-n(g")2a3rar:
(19)

where Kxc(g—{',n) is related to the dielectric function of a homo-
geneous medium with the density n. The density argument n is in
general not uniquely specified by the theory.

E . [n] =/ n(x)

€
Xc

The functional (19) is exact in the limit of weak density
variations

n(a) =n  + An(g) (20)

with
lan(p)| << ng

In this limit it is therefore possible to compare the gradient ex-
pansion (18) and the LD approximation (13). It is questionable
whether the gradient expansion improves the LD approximation in
this limit for density variations having wave lengths typical for
most systems |28,29‘. In the more realistic situation of strong
density variations the gradient expansion has primarily been ap-
plied to atoms |30| and surfaces |31-3h4j.

In the calculations for atoms, Herman et al |30| obtained im-
provements by treating C(n({)) as an adjustable parameter. However,
if the first principles results |26| for C(n(x)) ere applied to
atoms the correction to the LD result for the total energy has the
wrong sign. In the surface applications the work function and sur-
face energy were calculated. For the work function numerically very
different results have been obtained. Rose et al |33| found an
almost negligible correction due to the gradient term while Lau
and Kohn [31| obtained a substantial contribution which made the
agreement with experiment worse. For the surface energy Lau and
Kohn |31| found worse agreement when gradient terms are included,
while Rose et al |33| claimed improved agreement. As the experimen-
tal results for the surface energy are fairly uncertain Perdew et
al |35] instead considered a simple model for the surface, where
the contributions from different wave vectors were considered. The
results for the surface energy were compared with the ones of the
gradient expansion and Perdew et al concluded that the gradient ex-
pansion gives too large corrections and is inappropriate for sur-
faces.



