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Foreword

...both Gauss and lesser mathematicians may be justified in rejoicing that
there is one science [number theory| at any rate, and that their own, whose |
very remoteness from ordinary human activities should keep it gentle and

clean.
— G. H. Hardy, A Mathematictan’s Apology, 1940

G. H. Hardy would have been surprised and probably displeased with the
increasing interest in number theory for application to “ordinary human activities”
such as information transmission (error-correcting codes) and cryptography (secret
codes). Less than a half-century after Hardy wrote the words quoted above, it is no
1ohger inconceivable (though it hasn’t happened yet) that the N.S.A. (the agency
for U.S. government work on cryptography) will demand prior review and clearance
before publication of theoretical research papers on certain types of number theory.

In part it is the dramatic increase in computer power and sophistication that
has influenced some of the questions being studied by number theorists, giving rise
to a new branch of the subject, called “computational number theory.”

This book presumes almost no background in algebra or number theory. Its
purpose is to introduce the reader to arithmetic topics, both ancient and very
modern, which have been at the center of interest in applications, especially in
cryptography. For this reason we take an algorithmic approach, emphasizing es-
timates of the efficiency of the techniques that arise from the theory. A special
feature of our treatment is the inclusion (Chapter VI) of some very recent appli-
cations of the theory of elliptic curves. Elliptic curves have for a long time formed
a central topic in several branches of theoretical mathematics; now the arithmetic
of elliptic curves has turned out to have potential practical applications as well.



Extensive exercises have been included in all of the chapters in order to enable
someone who is studying the material outside of 4 formal course structure to solidify
her/his understanding. '

The first two chapters provide a general background. A student who has
had no previous exposure to algebra (field extensions, finite fields} or elementary
number theory (congruences) will find the exposition rather condensed, and should
consult more leisurely textbooks for details. On the other hand, someone with
more mathematical background would probably want to skim through the first
two chapters, perhaps trying some of the less familiar exercises.

Depending on the students’ background, it should be possible to cover most of
the first five chapters in a semester. Alternately, if the book is used in a sequel to
a one-semester course in elementary number theory, then Chapters [1I-VI would

fill out a second—semester course.
The dependence relation of the chapters is as follows (if one overlooks some

inessential references to earlier chapters in Chapters V and VI):

Chapter I

Chapter II

Chapter I1I Chapter V Chapter VI

Chapter IV

This book is based upon courses taught at the University of Washington (Seat-
tle) in 1985-86 and at the Institute of Mathematical Sciences (Madras, India) in
1987. I would like to thank Gary Nelson and Douglas Lind for using the manuscript
and making helpful corrections.

The frontispiece was drawn by Professor A. T. Fomenko of Moscow State
University to illustrate the theme of the book. Notice that the coded decimal
digits along the walls of the building are not random.

This book is dedicated to the memory of the students of Vietnam, Nicaragua
and El Salvador who lost their lives in the struggle for national self-determination.
The author’s royalties from sales of the book will be used to buy mathematics and
science books for the universities and institutes of those three countries.

Seattle, May 1987
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Chapter I
Some Topics in Elementary Number Theory

Most of the topics reviewed in this chapter are probably well known to most
readers. The purpose of the chapter is to recall the notation and facts from elemen-
tary number theory which we will need to have at our fingertips in our later work.
Most proofs are omitted, since they can be found in almost any mtroductory text-
book on number theory. One topic that will play a central role later — estlma.tmg
the number of bit operations needed to perform various number theoretic tasks by
computer — is not yet a standard part of elementary number theory textbooks.
So we will go into most detail about the subject of time estimates, especially in §1.

§1. Time estimates for doing arithmetic

Numbers in different bases. An integer n written to the base b is a notation
for n of the form (dg_1dk—3 - - - dido)e, where the d’s are digits, i.e., symbols for the
integers between 0 and b— 1; this notation means that n = dj_ 155~ ' +dj_obF"2 4

-++dyb+dp. If the first digit dx—, is not zero, we call n a k-digit base-b number.
Any number between b*~! and b* is a k-digit number to the base b. We shall
omit the parentheses and subscript ()5 in the case of the usual decimal system
(b = 10) and occasionally in other cases as well, especially when we’re using the
binary system (b = 2), if the choice of base is clear from the context. Since it
is sometimes useful to work in other bases than 10, one should get used to doing
arithmetic in an arbitrary base and to converting from one base to another, We
now review this by doing some examples.

 Remarks. (1) Fractions can also be expanded in any base, i.., they can be
represented in the form (dyx_jdx—z - -dido.d_1d_2- ). (2) When b > 10 it is
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I Some Topics in Elementary Number Theory

customary to use letters for the digits beyond 9. One could also use letters for ail
of the digits.

Example 1. {a) (11001001); = 201.
(b) When b = 26 let us use the letters A—Z for the digits 0—25, respectively.
Then (BAD)6=679, whereas (B.AD);¢ = 1676
Example 2. Multiply 160 and 199 in the base 7. Solution:
316
403
1254 .
16030

161554

*

Example 3. Divide (11001001); by (100111);, and divide (HAPPY)z4 by

(SAD)2e.
Solution:

101 101011011 KD %‘%

100111 11001001 : SAD [HAPPY

100111 ‘ GYBE

101101 CoLY

100111 CCAJ

110 ~ MLP

Example 4. Convert 10° to the bases 2, 7 and 26 (using the letters A—Z as
digits in the latter case).

Solution. To convert a number n to the base b, one first gets the last digit
(the ones’ place) by dividing n by b and taking the remainder. Then replace n by
the quotient and repeat the process to get the second-to-last digit d,, and so on.
Here we find that

0% = (11110100001001000000); = (11333311)7 = (CEXHO)¢.

' Exaxﬁple 5. Convert # = 3.1415926- - to the base 2 (carrying out the
computation 15 places to the right of the point) and to the base 26 (carrying out
3 places to the right of the point). o

Solution. After taking care of the integer part the fractional part is converted
to the base b by multiplying by b, taking the integer part of the result as d_l, then

02.



§1 Time estimates for doing arithmetic

starting over again with the fractional part of what you now have, successively
finding d_4, d_3,.... In this way one cbtains:

3.1415926 - - - = (11.001001000011111-- ), = (D.D_RS ) P

Number of digits. As mentioned before, a number n satifying b¥~! < n < b¥
has k digits to the base b. By the definition of logarithms, this gives the following
formula for the number of base-b digits (here “| |* denotes the greatest integer
function):

!
number of digits = [logbn] +1= —Og—n-] +1,
logh
where here (and from now on) “log” means the natural logarithm log,.

Bit operations. Let us start with a very simple arithmetic problem, the
addition of two binary integers, for example:

1111

1111000
+ 0011110
10010110

Suppose that the numbers are both k digits long; if one of the two integers has
fewer digits than the other, we fill in zeros to the left, as in this example, to make
them have the same length. AIthmigl_x this example involves small integers (adding
120 to 30}, we should think of k as perhaps being very large, like 500 or 1000.

Let us analyzé in complete detail what this addition entails. Basically, we
must fepeat the following steps k times:

1. Look at the top and bottom bit (the word “bit” is short for “binary digit”}
and also at whether there’s a carry above the top bit.

2. If both bits are 0 and there is no carry, then put down 0 and move on. '

3. If either (a) both bits are 0 and there is a carry, or (b) one of the blts is 0,
the other is 1, and there is no carry, then put down 1 and move on.

4. If either (a.) one of the bits is 0, the other is 1, and there is a carry, or else
(b)' both bits are 1 and there is no carry, then put down 0, put a carry in the next
column, and move on. ‘

5. If both bits are 1 and there is a carry, then put down 1, put a carry in the
next column, and move on. .

Donrg this procedure once is called a bit operation. Addmg two k-digit numbers.
requires k bit operations. We shall see that more complicated tasks can also be
broken down into bit operétions. The amount of time a computer takes to perform

3



I Some Topics in Elementary Number Theory

a task is essentially proportional to the number of bit operations. Of course, the
constant of proportionality — the number of nanoseconds per bit operation —
depends on the particular computer system. (This is an over-simplification, since
the time can be affected by “administrative matters,” such as accessing memory.)
When we speak of estimating the “time” it takes to accomplish something, we
. mean finding an estimate for the number of bit operations required.

Next, let’s examine the process of multiplying a k-digit integer by an £-digit

integer in binary. For example,

11101
1101
11101

111010
11101
101111001

In general, suppose we use this familiar procedure to multiply a k-bit integer
n by an £-bit integer m, where we suppose that k > ¢, i.e., we write the bigger
number on top. We obtain at most £ rows {one row fewer for each 0 bit in m),
where each row consists of a copy of n shifted to the left a certain distance, ie.,
with zeros put on at the end. Thus, each row is an integer of at most k + £ bits.
We may obtain our answer by first adding the second row to the first, then adding
the third row to the result from the first addition, then adding the fourth row to
the result of the second addition, and so on. In other words, we need at most £
(actually, at most £— 1) additions of at worst k + £—bit integers. (Notice that, even
though carrying can cause the partial sum of the first 7 rows to be one bit longer
than either the previous partial sum or the 7 — th row that is being added to it,
because of the way the rows are staggered it is easy to see that this can never bring
the integers we're adding to a length greater than k+ £ until the very last addition;
our final answer will have either k + £ or k+ £+ 1 bits.) Since each addition takes
at most k + £ bit operations, the total number of bit operations to get our answer
is at most £ (k + £). Since £ < k, we can give the simpler upper bound for the
number of bit operations: 2kZ.

We should make several observations about this derivation of an estimate for
the number of bit operations needed for performing a binary multiplication. In
the first place, we neglected to include any estimate of the time it takes to shift
the bits in n a few places to the left. However, in practice the shifting operation
is fast in comparision with the large number of bit operations, so we can safely
ignore it. In other words, we shall define the time it takes to perform an arithmetic

4



§1 Time estimates for doing arithmetic

taik to be an upper bound for the number of bit operations, without including any
consideration of shift operations, memory access, etc. Note that this means that
we would use the very same time estimate if we were multiplying a k-digit binary
expansion of a fraction by an £-digit binary expansion; the only additional element
is to note the location of the point separating integer from fractional part and
insert it correctly in the answer.

In the second place, if we want to get a time estimate that is simple and
convenient to work with, we should assume at various points that we’re in the
“worst possible cage.” For example, most of the additions involved in our multi-
plication problem will involve fewer than k + £ bits. But it is probably not worth
the improvement (i.e., lowering) in our time estimate to take this into account.

Thus, time estimates do not have a single “right answer.” It is correct to say
that the time needed to multiply a k-bit number by an [-bit number is at most
(k + £)£ bit operations. And it is also correct to say that it is at most 2k£ bit
operations. The first answer gives a lower value for the estimate of time, especially
if £ is much less than k; but the second answer is simpler and a little easier to
remember. We shall use the second estimate 2kf (One could also derive the
estimate kZ by taking into account that, because of the increasing number of zeros
to the right as you move from one row to the next, each addition involves only k
nontrivial bit operations.)

Finally, our answer can be written in terms of n and m if we remember the

above formula for the number of digits, from which it follows that k < %’,} +1

logm
and £< -,?;7 + 1.
We now discuss a very convenient notation for summarizing the situation with

time estimates.
The big-O notation. Suppose that f{n) and g(n) are functions of the pos-

itive integers n which take posstive (but not necessarily integer) values for all n.
We say that f(n) = O(g(n)) (or simply that f = O(g)) if there exists a constant
C such that f(n) is always less than C - g(n). For example, 2n? + 3n — 3 = O(n?)
(namely, it is not hard to prove that the left side is always less than 3n2).

Because we want to use the big-O notation in more general situations, we
shall give a more all-encompassing definition. Namely, we shall allow f and g to
be functions of several variables, and we shall not be concerned about the relation
between f and g for small values of n. Just as in the study of limits as n — oo
in calculus, here also we shall only be concerned with large values of n.

Definition. Let f(n;, n2,...,n,) and g(ni, na,...,n,) be two functions
whose domains are in the set of all r-tuples of positive integers. Suppose that there
exist constants B and C such that whenever all of the n; are greater than B the two
functions are defined and positive, and f(ny, n2,...,n,) < Cg(n1, n2,...,n,). In
that case we say that f is bounded by g and we write f = O(g).

5



I Some Topics in Elementary Number i‘heory

Note that the “=" in the notation f = O(g) should be thought of as more like
a “<” and the big-O should be thought of as meaning “some constant multiple.”
Example 6. (a) Let f(r) be any polynomial of degree d whose leading co-
efficient is positive. Then it is easy to prove that f(n) = O(n?). More generally,

one can prove that f = O(g) in any situation when f(n)/g(n) has a finite limit as
n — oo.
(b) If € is any positive number, no matter how small, then one can prove that

logn = O(n®) (i.e., for large n, the log function is smaller than any power function,
no matter how small the power). In fact, this follows because limp.oo ‘%’,—" = 0,
as one can prove using ’Hdpital’s rule.

(¢) I f(n) denotes the number k of binary digits in n, then it follows from
the above formulas for k that f(n) = O(logn). Also notice that the same relation
holds if f(n) denotes the number of base-b digits, where b is any fixed base. On
the other hand, suppose that the base b is not kept fixed but is allowed to increase, -
and we let f(n,b) denote the number of base-b digits. Then we would want to use

the relation f(n,b) = 0(%’&) _

In our use, the functions f(r) or f(ny, nz,...,n,) will often stand for the’
amount of time it takes to perform an arithmetic task with the integer n or with
the bunch of integers ny, na,...,n,. We will want to obtain fairly simple-looking
functions g(n) as our bounds. When we do this, however, we do not want to
obtain functions g(n) which are much larger than necessary, since that would give
an exaggerated impression of how long the task will take (although, from a strictly
mathematical point of view, it is not incorrect to replace g(n) by any larger function
in the relation f = O(g)).

Roughly speaking, the relation f(n) = O(n?) tells us that the function f
increases approximately like the d-th power of the variable. For example, if d = 3,
then it tells us that doubling n has the effect of increasing f by about a factor
of 8. The relation f(n) = O(log?n) (we write log?n to mean (logn)9) tells us
that the function increases approxima.tely like the d-th power of the number of
binary digits in n. That is because, up to a constant multiple, the number of bits
is approximately logn (namely, it is within 1 of being logn/log2 = 1. 4427 logn).
Thus, for example, if f (n) = O(log®n), then doubling the number of bits in n has
the effect of i mcrea.smg f by about a factor of 8. This is, of course, a much more
drastic increase in the sise of n than merely doublmg n.

Note that to write f(n) = (1) means that the functlon fis bounded by some

constant. )
Let us now return to our time estimate for multiplying a k-bit integer by an

£-bit integer. We shall abbreviate the result of that discussion by writing:
Time(k — bit X £ — bit) = O(kf).

6



§1 Time estimates tor doing arithmetic

{We actually showed that the constant in the definition of big-O can be taken to
be 2 in this case.) If we want to express our estimate in terms of the numbers n

and m being multiplied rather than in terms of the number of bits in them, then
we can write:

Time(n x m) = O((log n)(log m)).

As a special case, if we want to multiply two numbers of about the same size,
we can use the estimate

Time(k — bit x k — bit) = O(k?).

It should be noted that much work has been done on increasing the speed of multi-
plying two k-bit integers.when k is large. Using clever techniques of multiplication
that are much more complicated than the grade-achool method we have been us-
ing, mathematicians have been able to find a procedure for multiplying two k-bit
integers that requires only O(klogk loglogk) bit operations. This is better than
O(k?), and even better than O(k'*<) for any € > 0, no matter how small. Howéver,
in what follows we shall always be content to use the rougher estimates above for
the time needed for a multiplication.

In general, when estimating the number of bit operations required to do some-
thing, the first step is to decide upon and write down an outline of a detailed pro-
cedure for performing the task. We did this earlier in the case of our multiplication
problem. An explicit step-by-step procedure for doing calculations is called an al-
gorithm. Of course, there may be many different algorithms for domg the same
thing. One may choose to use the easiest one to write down, or one may choose
to use the fastest one known, or else orie miy choose to compromise and make a
trade-off between simplicity and speed The algorithm used above for multiplying
n by m is far from the fastest one known. But it is certainly a lot fa.ster than
repeated addition (adding n to itself m tlmes)

So far we have discussed addition and multiplication in bmary Subtraction
works very much like addition: we have the same estimate O(k) for the amount
of time required to subtract two k-bit integers. Division can be analyzed in much
the same way as multiplication, with the result that it takes O(k¢) bit operations
to obtain the quotient and remainder when a k-bit integer is divided by an £-bit
integer, where k > £ {of course, if k < £, then the quotient is gero and the remainder
is all of the k-digit number).

Example 7. Estimate the time required to convert a k-bit integer to its
representation jn the base 10. ‘

Solution. Let n be a k-bit integer written in binary. The conversion algorithm
is. a8 follows. Divide 10 = {1010); into n. The remainder — which will be one of
the integers 0, 1, 10, 11, 100, 101, 110, 111, 1000, or 1001 — will be the ones’ digit

7



I Some Topics in Elementary Number Theory

dg. Now replace n by the quotient and repeat the process, dividing that quotient
by (1010)2, using the remainder as d; and the quotient as the next number into
which to divide (1010),. This process must be repeated a number of times equal

to the number of decimal digits in n, which is [%'91%] + 1 = O(k). Then we're

done. {We might want to take our list of decimal digits, i.e., of remainders from
all the divisions, and convert them to the more familiar notation by replacing
0,1, 10, 11,...,1001 by 0, 1, 2, 3,...,9, respectively.) How many bit operations
does this all take? Well, we have O(k} divisions, each requiring O(4k) operations
(dividing a number with at most k bits by the 4-bit number (1010);). But O(4k)
is the same as O(k) (constant factors don’t matter in the big-O notation), so we
conclude that the total number of bit operations is O(k) - O(k) = O(k?). If we
want to express this in terms of n rather than k, then since k = O(logn), we can
write
Time(convert n to decimal) = O(log®n).

Example 8. Estimate the time required to convert a k-bit integer n to its
representation in the base b, where b might be very large.

Solution. Using the same algorithm as in Example 7, except dividing now by
the ¢-bit integer b, we find that each division now takes longer (if £ is large), namely,
O(k?2) bit operations. How many times do we have to divide? Here notice that the
number of base-b digits in n is O(k/£) (see Example 6(c)). Thus, the total number
of bit operations required to do all of the necessary divisions is O(k/£) - O(kf) =
O(k?). This turns out to be the same answer as in Example 7. That is, our estimate
for the conversion time does not depend upon the base to which we're converting
(no matter how large it may be). This is because the greater time required to find
each digit is offset by the fact that there are fewer digits to be found.

Example 9. Estimate the time required to compute nl.

Solution. We use the following algorithm. First multiply 2 by 3, then the
result by 4, then the result of that by 5,..., until you get to n. At the j-th step
yow're multiplying 5! by 7 + 1. Here you have n multiplications (actually, n — 2),
where each multiplication involves multiplying a partial product (ie., 31) by the
next integer. The partial product will start to be very large. As a worst case
estimate for the number of bits it has, let’s take the number of binary digits in the
last product, namely, in n!,

To find the number of bits in a product, we use the fact that the number of
digits in a product of two numbers is either the sum of the number of digits in
each factor or else 1 more than that (see the above discussion of multiplication).
From this it follows that the product of n k-bit integers will have between nk and
n(k + 1) bits. Thus, if n is a k-bit integer — which means that every integer less
than n has at most k bits — then n! has at most n(k + 1) bits, which is O(nk).

8



§1 Time estimates for doing arithmetic

Thus, in each of the n — 2 multiplications in computing n!, we are multiplying
an integer with at most k bits (namely 7+ 1) by an integer with O(nk) bits (namely
71). This requires O(nk?) bit operations. We must do this n — 2 = O(n) times. So
the total number of bit operations is O(nk?)-O(r) = O(n?k?). Since k = O(logn),
we end up with the estimate: Time(computing n!) = O(n2log?n).

In concluding this section, we make a definition that is fundamental in the
theory of algorithms and computer science.

Definition. An algorithm to perform a computation involving integers ny, nz,
.., np of ky, kg, ..., k, bits, respectively, is said to be a polynomial time algorithm
if there exist integers dy, dz, ..., d, such that the number of bit operations required
to perform the algorithm is O (k¥ k3 - - k).

Thus, the usual arithmetic operations +, —, X, -+ are examples of polynomial
time algorithms; so is conversion from one base to another. On the other hand,
computation of n! is not. (However, if one is satisfied with knowing n! to only a
certain number of significant figures, e.g., its first 1000 binary digits, then one can
" obtain that by a polynomial time algorithm using Stirling’s approximation formula
for n!.)

Exercises

1. Multiply (212)s by (122})a.
2. Divide (40122), by (126);.
3. Multiply the binary numbers 101101 and 11001, and divide 10011001 by

1011. .
4. In the base 26, with digits A—Z representing 0—25, {a} multiply YES by

NO, and (b) divide JQVXHJ by WE. :

5. Write e = 2.7182818 - - - (a) in binary 15 places out to the right of the point,
and (b) to the base 26 out 3 places beyond the point.

6. By a “pure repeating” fraction of “period” f in the base b, we mean
a number between 0 and 1 whose base-b digits to the right of the point repeat
in blocks of f. For example, 1/3 is pure repeating of period 1 and 1/7 is pure
repeating of period 6 in the decimal system. Prove that a fraction ¢/d (in lowest
terms) between 0 and 1 is pure repeating of period f in the base b if and only if
b — 1 is a multiple of d. .

7. (a) The “hexadecimal” system means b = 16 with the letters A-F rep-
resenting the tenth through fifteenth digits, respectively. Divide (131B6C3),¢ by
(1A2F) 18-

(b) Explain how to convert back and forth between binary and hexadecimal
representations of an integer; and why the time required is far less than the general
estimate given in Example 8 for converting from binary to base-b.

9



I Some Topics in Elementary Number Theory

8. (a) Using the big-O notation, estimate in terms of a simple function of n
the number of bit operations required to compute 3™ in binary.

{b) Do the same for n"

9. Estimate in terms of a simple function of n and N the number of bit
operations required to compute N

10. The following formula holds for the sum of the first n perfect squares:

72 =n(n+ 1)(2n + 1)/6.

n
5=

(a} Using the big-O notation, estimate (in terms of n) the number of bit
operations required to perform the computations in the left side of this equality.

(b) Estimate the number of bit operations required to perform the computa-
tions on the right in this equality.

11. The object of this exercise is to estimate as a function of n the number of
bit operations required to compute the product of all prime numbers less than n.
Here we suppose that we have already compiled an extremely long list containing
all primes up to n.

{a) According to the Prime Number Theorem, the number of primes less than
n {this is denoted n(n)) is asymptotic to n/logn. This means that the following
limit approaches ! as n — oco: lim % Using the Prime Number Theorem,
estimate the number of binary digits in the product of all primes less than n.

(b) Find a bound for the number of bit operations in one of the multiplications
that’s required in the computation of this product.

(c) Estimate the number of bit operations required to compute the product of
all prime numbers less than n.

12. Let n be a very large integer written in binary. Find a simple algorithm
that computes [\/n] in O(log®n) bit operations (here { ] denotes the greatest

integer function).

§2. Divisibility and the Euclidean algorithm

Divisors and divisibility. Given integers a and b, we say that a divides b (or
“p is divisible by a”) and we write a|b if there exists an integer d such that b = ad.
In that case we call @ a divisor of b. Every integer b > 1 has at least two divisors:
1 and b. By a proper divisor of b we mean a divisor not equal to b itself, and by a
nontrivial divisor of b we mean a divisor not equal to 1 or b. A prime number, by
definition, is an integer greater than one which has no divisors other than 1 and
itself; a number is called composste if it has at least one nontrivial divisor. The
following properties of divisibility are easy to verify directly from the definition:
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Tt e -Pivisibility and the Euclidean algorithm

1. If a}b and c is any integer, then albc.

2. If alb and b|c, then alc.

3. If alt and alc, then afb + ¢

If pis a prime number and « is a nonnegative integer, then we use the notation
p°lb to mean that p* is the highest‘pow.er of p dividing b, i.e., that p*|b and p®+1 jb.
In that case we say that p® exactly divides b.

The Fundamental Theorem of Arithmetic states that any natural number n
can be written uniquely (except for the order of factors) as a product of prime
numbers. It is customary to write this factorization as a product of distinct primes
to the appropriate powers, listing the primes in increasing order. For example,
4200 = 2%-3-52.7. . '

Two consequences of the Fundamental Theorem (actually, equivalent asser-
tions) are the following properties of divisibility:

4. If a prime number p divides ab, then either pla or p|b.

5. If m|a and n|a, and if m and n have no divisors greater than 1 in common,
then mnla.

Another consequence of unique factorization is that it gives a systematic
method for finding all divisors of n once n is written as a product of prime powers.
Namely, any divisor d of n must be a praduct of the same primes raised to powers
not exceeding the power that exactly divides n. That is, if p*||n, then p?||d for
some f satisfying 0 £. 8 < a. To find the divisors of 4200, for example, one takes
2 to the 0, 1-, 2- or 3-power, multiplied by 3 to the O- or 1-power, times 5§ to the
0-, 1- or 2-power, times 7 to the 0- or 1- power. The number of possible divisors
is thus the product of the number of possibilities for each prime power, which, in
turn, is @ +1. That is, a number n = p{* p3? '.-'-p,‘f" has (a; +1)(az+1) - (ar+1)
different divisors. For example, there are 48 divisors of 4200.

Given two integers a and b, the greatest common divisor of a and b, denoted
g.c.d.(a,b) (or sometimes simply (a,b)) is the largest integer d dividing both & and
b. It is not hard to show that another equivalent definition of g.c.d.(a,b) is the
following: it is the only positive ’integer d which divides a and b and is divisible by
any other number which divides both a and b. ,

If you happen to have the prime factorization of a and b in front of you, then
it’s very easy to write down g.c.d.(a,8). Simply take all primes which occur in
both factorizations raised to the minimum of the two exponents. For example,
comparing the factorization 10780 = 22 .5.72 . 11 with the above factorization of
4200, we see that g.c.d.(4200, 10780) = 22 - 5- 7 = 140,

" One also oc;:asionally uses the least common multiple of a and b, denoted
l.c.m.(a, b). It is the smallest positive integer that both a and b divide. If you have
the factorization of a and b, then you can get {.c.m.(a, &) by taking all of the primes
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