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PREFACE

The main forces which have shaped the foundations of mathematics
over the past twenty-five years have been antithetical in purpose but
complementary in effect. To Hilbert’s formalism we owe the  detailed
analysis of the structure of mathematical systems and the imaginative
conception of mathematics as its own object of discourse; to the
constructivism of Brouwer, the critique of classical logic and the
intuitive notion of a finitist proof.

The formalist-finitist controversy in the foundations of mathematics
was resolved, in prineciple, by Wittgenstein’s analysis of the chacteristics
of a formal language. Wittgenstein showed that in a formal language
the meaning of the signs is a purely functional property of the language ;
it follows that Brouwer’s denial of the validity of a formal axiom—the
tertium non datur—was totally mistaken. The conclusion to be drawn
from the finitist critique is not that certain parts of mathematics are
incorrect but that the currently accepted interpretation of the signs, in
particular the interpretation of the quantifiers 4 and E in terms of

uhiversality and existence is untenable. One cannot dispute a formal
equivalence like

~ Ax(P(x)) = Ex(~ P(z))

but one may well be able to show that the use of the quantifiers 4 and ¥
in the formula is not consistent with the ordinary usage of the terms
“for all” and “there exists”, so that in a system in which this formula

holds, “A4” and “E” are not synonymous with the universal and
existential operators. ’ ‘

Constructivism and formalism found a point of contact in recursive
number theory which was developed by Skolem, and by Herbrand and
Godel in their construction of non-demonstrable propositions. Recursive
number theory plays a fundamental part in the fusion of these two
modes of thought in the present work.

The aim of constructive formalism is to replace the intuitive notion.

of a finitist proof by the strictly formal property of demonstrability in
a formal system. This is accomplished by the construction of a mathe-
matical system—the equation calculus—which operates independently
of the axioms and constants of logic. This system affords a means of

proving certain types of logical formule and consequently effects a
reduction of logic to mathematics. :

The necessity for some equivalent of the theory of types involves
any system founded upon the concept of class in intolerable complications,
but even apart from questions of expediency there are good grounds for
denying the class concept a primary part in a mathematical system.
The equation calculus gives to fumction the fundamental role that
classical analysis assigns to related classes. A function is defined by
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the introductory equations of its sign, which by means of the trans-
formation rules of the calculus, serve to transform the function-sign
into a definite numeral, when definite numerals are assigned to the
argument places in the function-sign.

Though the reduction of mathematics to a formal system independent
of logic solves many of the problems in the foundations of mathematics
—in the semse that it eliminates them-—there remains the ‘ultimate’
problem of the relation of mathematics to reality, which finds expression
in such questions as: “If mathematics is a purely formal system how
is the application of mathematics possible ?* “How can an ‘arbitrary
system of conventions’ foretell the future ?” ‘“Why does common
arithmetic rerve the shopkeeper, the scientist and the mathematician all
equally well #”  Such questions form only a part of the general problem
of the relation of language to reality. Tt is a commonplace that the
scientist, like the theologian, creates the world in his own image, but
what in fact is created is a language and neither the experiments of the
one nor the postulates of the other show in what way language is tied
to reality.

These essays presuppose some knowledge of, and familiarity with, the
problems of the foundations of mathematics and do not undertake a
historical survey of current theories. The applications of the formal
gystem we construct are given in outline only and demand a not
inconsiderable mathematical technique for their appreciation, but the
system itself, both in form and content, is probably one of the simplest
of its kind. The equation calculus was conceived some ten years ago
and many of the thoughts herein expressed date from the same time.
‘The first draft of the essays was completed a year later but the final
revision and rewriting were delayed by the war; in the intervening
yoars 1 have subtracted from, rather than added to, the original draft
so that the essays may be said to be more sculptured than constructed.

Of the many friends who have helped, encouraged and inspired this
work, first and foremost T must mention Ludwig Wittgenstein, to whose
lectures at Cambridge between 1931-34 and the many oconversations I
was privileged to have with him, I am immensely indebted ; only in
vecent years have I grown to understand how much he taught me.

To Paul Bernays I offer gratitude and appreciation for his support,
advice and help given so generously for many years,

My last word is for my dear friend Francis Skinner, who died at
Cambridge in 1941, and left no other record of his work and of his great
gifts of heart and mind than lies in the recollections of thoss who had
the good fortune to know him. :

R. L. GoopsTEIN.
University College,

August, 1949,
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INTRODUCTION

EXISTENCE IN MATHEMATICS. ZENO'S PARODOX.
THE INFINITUDE OF PRIMES.

The great discoveries in mathematics are not in the nature of
uncovered Bsecrets, pre-existing timeless truths, but are rather con-
structions : and that which is constructed is a symbolism, not a
proposition. The power of a living symbolism is the source of that
insight into mathematics which is termed mathematical intuition.

In the foundations of mathematics a formal calculus plays the part
which is taken by symbolism in the informal development. A symbolism
leads on, a formal calculus leads back, and just as a formal calculus,
rightly is felt by creative mathematicians as a barrier to the free
expression of ideas, so in tho critical study of the foundations, symbolism
is a source of error and misconception.

The foremost question of the foundations of mathematics for the
last twenty-five years concerns the legitimacy of certain methods of
proof in mathematics. What makes this question so difficult is the
absence of any absolute standard, outside mathematics, with which
mathematics can be compared. Philosophers have held that such a
standard is to be found in a study of the Mind ; that just as the laws of
Nature are discovered by observation of, and experiment in, natural
phenomena, so too the laws of mathematics are to be found as laws of
thought, by a study of thinking processes. Yet, if we consider, we find
that the ‘Laws of Nature’ are but empirical hypotheses, subject to
limitation and modification, admitting exceptions related to time and
describing the world as it is, whereas the rules of mathematics are
mathematics, timeless because they are outside time, independent of all
observation and experiment and accordingly neither true nor false,
expressing no property of the world, neither validating, nor validated
by, any fact. The ‘laws of thought’, if by the term we mean laws
formulated by experimental psychologists, no more form a standard by
which the rules of mathematics can be tested, than tho deductions of a
Martian, from observations of the game, test the validity of the rules of
chess.

What then is the meaning of the controversy between formalists
and constructivists ? The formalists say that the criteria by which
formal systems are tested are the criteria of freedom-from-contradiction
and completeness, and all their efforts in the past twenty-five years have
been directed towards proving that a formal calculus, like Principia

LA
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Mathematica, a calculus of implication, disjunction and quantification,

contains no insoluble problems, and in particular towards the construetion

of a proof of the non-contradictoriness of this calculus. This pre-

occupation with contradiction springs from two widely different sources.

From the time when language first ceased to be only a wvehicle of
communication and became itself an object of discourse, men have
invented paradoxes. Already in the oldest paradoxes of which we have

written record, the paradox of the ‘‘Liar” and the infinity paradox ot

Zeno we find the prototypes of the paradoxes of the present day. The

construction of formal systems, the very object of which was the

regolution of these paradoxes, has accomplished only their multiplication.

It seems as if the elimination of a paradox can, so to speak, be achieved

on only one plane at a time and at the cost of fresh paradoxes on higher

planes. Rather, this is the impression which the logistic technique of
paradox resolution has produced, for in fact the roots of the paradoxes

lie in this very technique.

The second source from which the fear of hidden, yet to be dis-
covered, contradictions springs is the uncertainty which every thinker
has felt, particularly in recent years, regarding the significance of
postulational methods in mathematical philosophy, a feeling that the
postulation of the existence of even a mathematical entity is entirely
specious, metaphysical, and in no way comparable to the invention of
a physical entity to serve as a medium of expression or a physical model.

Existence in Mathematics. Problems regarding the existence of
mathematical entities are of many different kinds. Contrast the
questions. Are there numbers, do numbers exist? Does the real
number ‘“‘¢” exist as something apart from the sequence 1, 141,
P+1-41/25b14+14+1/20 41,81, ...%; Is there a prime number
.greater than 10 ?; Is there a prime pair less than 1010 ¢ greater than
101 7 To the first question one may answer : Amongst the signs of our
language we distinguish the numerals, or number-signs, which are con-
structed from the number-sign “0” by the operation of placing a vertical
stroke after a number sign ; the term ‘number’ is thus a classification
index of signs. The sense in which we can say that numbers exist is that
number signs are used in our language. Such questions as “have numbers
an objective reality”, “‘are numbers subjects or objects of thought” are
disguised questions concerning the grammar of the word “number” and
ask whether or not we formulate such sentences as : That which you
see, hear, taste, touch, etc., are numbers. '

The second question is concerned with the meaning
in mathematics and with the concept of an infinite set. To say that the
real number “e” has an existence independent of the convergent sequence
L1 1L,141+41/21 ... is equivalent to saying that some infinite

of limit-processes
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process is completed, for instance that the prooess of writing down ail
the digits in the decimal expansion of e has been carried through. In
what sense can an infinite process be thought of as completed ? An
infinite process is, by definition, a process in which each stage of the
process is followed by another stage just as each numeral is followed by
another, formed by adding a vertical stroke to the end of the numeral.
An infinite process is therefore an unfinishable process, a process which
does mot contain the possibility of being completed. A completed
infinite process is a contradiction in terms.

The relation of Zeno’s paradox to the formalist-finitist controversy.

It is, however, commonly argued that we can conceive of a completed

infinite process; that in fact, were it not so, Zeno’s famous argument
would force us to deny the possibility of motion. For in passing from
one position 4, to another B, a body must pass through the mid-point
Ay of AB and then through the mid-point A of 4:B, and then through
the mid-point 43 of A28, and so on. Thus the motion from 4 to B

may be considered to consist in an unlimited (infinite) number of stages,

viz., the stage of reaching A4,, the stage of reaching A,, the stage of
reaching A3, and so on. After any stage 4, follows the stage 4,41
and no matter how many of the stages we have passed through we have
not reached B, and so we never reach B. But if motion frem a point 4
to any point B is not possible, then no motion is possible. Thus Zeno
argues ; and by reductio ad absurdum (for motion is certainly possible)
it follows that the motion from 4 to B must be regarded as a completed
infinite process. The fallacy in this discussion is by no means easy to
detect and seems to have escaped the notice of many competent thinkers.

If we say that motion is possible we are appealing to our familiar
experience of physical bodies changing their positions. Let us imagine
a man running along a race track across which tapes are strung a few
feet from the ground. We may suppose the track is 100 yards long
and that we commence to string the tapes at the 50 yard mark. If we
call the ends of the track 4, B and the 50 yard mark Ay, then A, is
the mid point of 4,B and so on as above. At each of the points 4,
Az, As, . . . a tape is strung across the track. As a man runs from A
to B he will break eack of the tapes we set up, and if we suppose that a
tape has been set up at each of the points A;, As, As, . .. then the
runner will have broken an infinite number of tapes. In putting the
argument in this form we have only placed the difficulty in a more
obvious light, for we are now confronted with the task of setting up an
unlimited number of tapes, or, looking at it from anothier view point,
of isolating an unlimited number of points. On’ the one hand we have
the possibility of passing from 4 to B and the unlimited possibility of
specifying points between 4 and B (an unlimited number of fractions
between 0 and 100) and on the other hand the impossibility of isolating

these points on the track. How is this apparent incompatibility
resolved !
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Think of a man counting from 0 to 100. He may say all the natural
numbers from 0 to 100, or he may say only the “tens” or just “fifty”,
“hundred”, or he may say “half, one, one and a half, two”, and so on,

- by halves, up to a hundred. If he counts by tens can we say he has
passed through all the integers between one and a hundred (or passed
over them)? And if he counts by units, that he has passed through
all the fractions between these units ? One would not hesitate to answer
that the man has counted, or passed through, only those numbers which
in fact he counted, whatever they were, and that numbers which he did
not count, even though such numbers could be inserted between the
numbers which he counted, were not passed through by him in his
counting. Correspondingly when a man runs from 4 to B he passes
those points (or breaks those tapes) which we isolate, which we name,
and these points only and what we name will be a finite number of points,
however great. The Zeno argument achieves its end by confusing the
physical possibility of motion with the logical possibility of naming as
many points as we please.

It is sometimes maintained that the resolution of Zeno’s paradox
lies in the fact that a steadily increasing infinite sequence of numbers
may be bounded; e.g., the sequence whose n* term is n/(n + 1) is
steadily increasing, because (n + 1)/(n + 2) exceeds n/(n + 1) by
1/(n 4+ 1)}(n + 2), and is bounded above by unity since n/(n + 1) is
1/(n - 1) less than 1. This fact is applied to Zeno’s argument in the
following way : Suppose the tape at the point A4 is fixed in } minute,
the tape at the point 4, in (§) minutes, the tape ai the point 4j in
(4)® minutes, and so on, then the first n tapes are fixed in I— ()
minutes, so that within one minute all the tapes are fixed, and an infinite
operation has been completed. Thus although there always remains s
tape to be fixed no matter how many have been set up, yet within a
minute of starting there is no tape which has not yet been set up. This
argument does not however resolve the paradox but merely restates it
in a fresh plane, for the conclusion seems now to be that measurement
of time is imipossible, and this in its turn is bound up with the possibility
of motion (for example, time may be measured by the motion of the
hand of a clock, or the sun across the sky). The resolution of the
paradox in this form is the same as the resolution of the motion-paradox.
If our criterion for the number of tapes fixed in a minute is the criterion
of experiment, then no matter how rapidly the experiment is carried
out the unfinishable task of setting up an unlimited number of tapes,
will not be finished. And if our criterion is just that 1 — (§)* is less
than unity, then this criterion tells us nothing about an actual experiment
and we cannot appeal to the reality of the passage of time to generate
the paradox.

Consider an analogous example. A line is drawn from the point
0 to the point 1. In what sense can we say that the line passes through
infinitely many points, that drawing the line completes an infinity of
operations, say the operations of joining 0, } then 3, § then §, } and
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so on? Let us describe two operations. (1) Drawing a line from the
point 0 to the point 1, and (2) drawing a line from 0 to §, a line from
1 to %, a line from % to }, and so on. The first operation has but a single
stage, the second is an unfinishable operation by definition, since no
last stage is defined. What have these operations in common and in
what way do they differ ? Zeno would persuade us that the first operation
is indistinguishable from the second, thereby generating the paradox of
a finished operation being identical with an unfinishable one. In drawing
a line from O to 1 we have certainly drawn a line from 0 to }, and a line
from 4 to & and a line from § to §, and so on, so that by carrying out the.
first operation, there is no.stage of the second operation that is unfinished. -
The fallacy in this argument is concealed beneath a dual usage of the
expression ‘“‘a line is drawn from a point 4 to a point B”. In describing
the first operation, and in describing each of the stages of the second
operation, the expression “a line drawn from a point 4 to a point B” .
means a line whose end.-points are 4 and B, ie., a physical mark, a
stroke, terminating at 4 and B. The first operation consists in drawing
a stroke from 0 to 1. The second operation consists in drawing
successively strokes from 0 to %, from 4 to £, from % to § and so on. Yet
when we say that the stroke from 0 to 1 is also a stroke from 0 to }
(or # to %, ete.) we have now changed the meaning of the expression
“a stroke from A to B” for the stroke from 0 to 1 does nmot terminate
at the point 4 and the operation of drawing a stroke from 0 to 1 cannot
be said to. consist in strokes from 0 to 4, from % to §, etc. What con-
stitutes a stage of the second operation, the termination of a stroke at
one of the points 4, %, #, . . . is precisely what is lacking in the first
operation.

The resolution of Zeno's paradox may be expressed by saying that
Zeno confuses a literal and a metaphorical use of the expression ‘‘moving
from one point to another”. In the literal sense of this expression
motion is change of the relative positions of physical objects, and ‘point’
is a physical object ; in this sense motion from one point to another
passes through but a finite number of ‘points’, physical objects isolated
and specified on the route. We may specify as many such objects as
we please, but what we specify will have a number. The metaphorical
use of the expression ‘“‘moving from one point to another” gives this
expression the sense of “a variable increasing from one value to another”.
As the variable z increases from O to 1 it passes through the: values
3, £, 1, and so on, and therefore, seemingly an endless succession of
events is completed. But the expression “as z increases from 0 to 1
it passes through the values §, %, §, and 8o on”, says only that the function
m/(m - 1) is one which increases with m, all its values lying in (0, 1).
And the proof that the function is increasing and that its values lie in
(0, 1) does not involve the possibility of completing an endless process,
for what is to be proved is just that (m + 1)/(m + 2) exceeds m/(m + 1)
by 1/(m 4- 1)(m -- 2) and that unity exceeds m/(m + 1) by 1/(m + 1),
ie., that m + 12 =mim + 2)+ 1 and m + 1) — 1 = m.
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The wnfinitude of primes. We come now to the third question “Is
there a prime number greater than 101> ¢ Consider first the question : '
Is there a prime number between 100 and 1010 { 10”7 ? The nine
numbers 1010 - 1, 100 - 2, 101 4 3, 1010 4.4, 1010 -5, 101 4 6,
1010 + 7, 1010 4- 8, 100 4 9, can be tested to find whethe_)r.or n9t they -
are prime, that is to say, each of the numbers may be divided in turn
by the numbers 2, 3, 4, 5, up to 105 and if one of the nine numbers leaves
a remainder not less than unity for each of the divisions then that number
is prime ; if however each of the nine numbers leaveés a zero remainder
for some division then none of the nine numbers is prime. In the same
way we can test whether any of the numbers between 1010 -1 10 .a.pd
1010 4- 20 is prime, and, of course, the test is applicable to any finite
series (i.e., a series in which the last member is given). Thus the question
“is there a prime number between « and 5 may be decided one way
or the other in a specifiable number of steps, depending only upon a and
b, whatever numbers @ and b may be. When, however, we ask whether
there is a prime number greater than 10¢ the test is no longer applicable
since we have placed no bound on the number of experiments to be
carried out. However many numbers greater than 1010 we tested, we
might not find a prime number and yet should remain always unable
to say that there was no prime greater than 101. We might, in the
course of the experiment, chance upon a prime number, but unless this
happened the test would be inconclusive. To show that the test can
really be decisive it is necessary that we should be able in some way
to limit the number of experiments required, and this was achieved by
Euclid when he proved that. for each value of n, the chain of numbers
from 7 to n! 4 1 inclusive, contains at least one prime number. The
underlying ideas of this proof are just that u ! 4- 1 leaves the remainder
unity when divided by any of the numbers from 2 to n, and that the
least “number, above unity, which divides any number is necessarily
prime (every number has a divisor greater than unity, namely, the
number itself, and the least divisor is prime since its factors will also
divide the number and so must be unity or the least divisor itself ) ; thus
the least divisor (greater than unity) of n ! + 1 is prime and greater than
n.  What Euclid’s proof accomplished is not the discovery or specification
of a prime number but the construction of a function whose values are
prime numbers. We shall have further occasion to observe how often
mathematics answers the question “is there a number with such and such
properties” by constructing a function : the manner and kind of such
constructions will form the subject of later considerations.

When we turn to the question concerning the existence of a prime
pair greater than 1010 we are faced with the endless task of testing, one
after the other, the primes greater than 100, of which, as we have seen,
we can determine as many as we please, to find whether there are two
primes which differ by 2" In this instance no function has been con-
structed whose values form prime pairs, and there is no way of deciding
the question negatively. We have asked a question—if question it be

-
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—to which there is no possibility of answering no and to which the
answer yes could be given only if we chanced to find, in the course of the

endless task of seeking through a succession of primes, a pair of primes

which differed by 2. The formalists maintain that we can conceive of

this endless task as completed and accordingly can say that the sentence

“there is a prime pair greater than 109’ must be either true or false ;

to this, constructivists reply that a “completed endless task” is a self-

contradictory concept and that the sentence “‘there is a prime pair

greater than 1010 may be true but could never be shown to be false,

so that if it be a defining characteristic of sentences that they be either

true or false (the principle of the excluded middle) then “there is a prime

pair greater than 109" is no sentence. This dilemma has led some

constructivists to deny the principle of the' excluded middle, which

means they have changed the definition of “‘sentence”, others to retain

the principle, and, albeit unwillingly, reject the unlimited existential

proposition, whilst the formalist retains both the principle of excluded
middle and the unlimited existential proposition together with an uneasy
preoccupation with the problem of freedom-from-contradiction. The
real dispute between formalists and constructivists is not a dispute
concerning the legitimacy of certain methods of proof in mathematics;
the constructivists deny and the formalists affirm the possibility of
completing an endless process.



