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Preface

As newer processes are developed for the manufacture of optical fibers, better
quality is increasingly available while production costs quickly become more
feasible. Consequently, communication in the optical frequencies is among the
most rapidly developing areas of technology.

Although a number of books treating this material are presently available, they
are generally designed for research scientists. This text is the result of notes
developed for undergraduate and graduate courses in optical waveguides—in-
cluding classes for practical engineers. It is intended to serve readers with some
background in electromagnetic theory, but a thorough grounding is not assumed.
Advanced undergraduates as well as practicing engineering scientists in the field
of communications could find it useful. A basic understanding of wave propaga-
tion in bounded and unbounded regions should be sufficient prerequisite.

The text investigates from the field point of view the behavior of waves propa-
gating in planar and cylindrical waveguides. Owing to the complexity of the
problem, the analysis is mathematical in nature, but the physical mterpretanon of
the theoretical results is emphasized throughout.

Beginning with a brief review of electromagnetic theory, wave propagation in
free space, and guided waves in homogeneous media, the book analyzes the
basic dielectric sheet, imperfect, and inhomogeneous waveguides. The more
practical cladded cylindrical and inhomogeneous circular waveguides are also
considered. Mathematical techniques involving eigenfunctions and Green's
function-are discussed in detail, as are methods of approximation.

One of the goals of this treatment is to enable readers to grasp fully the mate-
rial in current research papers. Consequently, many techniques usually found
only in higher-level mathematics textbooks are presented, eliminating the annoy--
ing and frustrating task of locating suitable references. While the text should .
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remain accessible to those wishing to focus on the highlights of the mathematical
development, it is intended to make further progress possible.

I would like to thank those reviewers whose criticisms and suggestions helped
refine the manuscript. 1 also wish to extend my appreciation to John Haber of
Elsevier North Holland, Inc., to Harit Majmudar, head of the Department of
Electrical Engineering at Worcester Polytechnic Institute, for his support and»
encouragement, and to Geri Hicky for typing the manuscript.
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Electromagnetic Theory

This chapter provides a survey of the background material that will be the
basis of the entire book. The chapter begins with a review of the field
relations and their mathematical solution. In order to analyze the wave
equation, the method of separation of variables is introduced. The
one-dimensional wave equation is investigated in detail and the results
generalized to describe wave propagation in an arbitrary direction. The
formulation of problems in unbounded nonhomogeneous media follows.
Finally, wave propagation in a guldmg structure filled with a homogeneous
medium will be studied.

1.1. Maxwell’s Equations

The field of a quantity is defined as the mathematical function that
describes the variation of the quantity in a region. The electromagnetlc
field obeys Maxwell’s equations,

Vx E(r, )= — ang’t). ' (Faraday’s law), ' a1
VxH@r, )=Ja, )+ Egg;;t)- (Ampere’s circuital law), ‘ @2
v-B(r,1)=0, &)
v .[")(.-, 1)=p(r, 1) (Gauss’s law), @

where tildes label functions of position and time, and -

E = electric field intensity in volts per meter,

=magnetic field intensity in amperes per-meter,
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D =electric flux density in coulombs per square meter,

B =magnetic flux density in webers per square meter,

J =electric current density in amperes per square meter
=§(r, )+, 1),

§= the source current density,

J,=the conduction current density,

p=-clectric charge density in coulombs per cubic meter, and

r=the position vector of the field point.

Maxwell’s equations are supplemented by the following constitutive
relations, which characterize the properties of the medium:

D=¢E, ()
B=pui, ©)
J.=0E, @)

where
€=the permittivity in farads per meter,
p=the permeability in henry per meter, and
o=the conductivity in mhos per meter.

Equations (5)-(7) are valid for linear isotropic media. A medium is linear if
these relations hold independent of the magnitude of the field. A medium
is isotropic if these relations hold independent of the direction of the field.
The constitutive parameters (€, s, or a) can be functions of position and
time.

1.2. Periodic Time Dependent Fields

Maxwell's equations are partial differential equations in which the inde-
pendent variables are the spatial coordinates and time. Consider the
simple-harmonic time varying field, which can be expressed in the exponen-
tial form

E@r, 1)=E(r)e/' =Ee/, Ez=E(r), n

H(r, t)=H(r)e/* =He/, H=H(r). (2)
Taking simple-harmonic time varying fields in the time domain does not
restrict the applicability of the results. This may be readily understood
when one recalls that any function of time can be represented as a Fourier
series or Fourier integral of simple-harmonic functions. Once the solution

of a simple-harmonic time varying field is known, the principle of super-
position may be used to find the total field.
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For simple-harmonic time varying fields, Maxwell’s equations take the
following form:

VxE= —jouH, (3)
VxH=J+jweE, 4)
V-B=V(uH)=H-Vyu+pV-H=0, (5)
VD=V+(cE)=E-Ve+eV-E=p. (6)

In a region excluding sources, that is, where $=0 and p=0, Egs. (4) and
(6) become

VxH=J +jweE=(0+jwe)E=jweE, )]
e=e(l+0/jwe), (8)
V-D=E-Ve+c¢V-E=0. )]

The complex permittivity, which will be written e, is a convenient parame-
ter, enabling Eq. (7) to have the same form whether the medium is a
perfect conductor, a perfect insulator, or somewhere in between. Note that
all field quantities in Eqgs. (3)-(9) are functions of position only, the time
dependency of these functions having been removed through Egs. (1) and
(2). The problem is thus simplified to finding the fields as function of
position, that is, to solving the above equations. The complete expression
of the fields as function of both position and time can then be obtained by

factoring in e/,

1.3. Generalized Wave Equations

Consider fields in a region which contains no sources, that is, where $=0
and p=0. Maxwell's equations are then

VXE= —jouH, (1)

V xH=jweE, e=¢(l+0/jwe). . @
The divergence of Egs. (1) and (2) yields ’
HeVp+uV-H=0, ' 3)
E-Ve+eV-E=0. C))

These equations involve two field quantities, E and H, and can be
reduced to a single equation for one field. The H field is first obtained
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from Eq. (1) and then substituted into Eq. (2):

H= —l— V xE,
—Jjwp
VxH=Vx(~—L—VxE), 5)
—jwp
1
_v( )x VXE)+— Vx V xE),
—o | X(VXE) (VxE)
jop
Substitution of Eq. (5) into Eq. (2) yields
1
VxVxE—;Vpx(VxE)=—12E, - (6)
where
‘ vl =jopjwe= —w’ue ¢)

and vy is the wave number of the medium.
Similarly, if E is solved from Eq. (2) and then substituted into Eq. (1),
one obtains

VxVxH—;st(VxH)=—72H. (8)

With use of the vector identity
VxVxg=VVg— Vg ‘ )]
and Eq. (4), Eq. (6) then takes the following form:

VV.E-V2E— %vyx(v E) = —y2E,
V(—_e—lVe-E)—V’E—ﬁvux(VxE)=—§2E, (10)

VZE+ V(%Vc-E) + %V/JX(V X E) —y2E=0.
Similarly, the use of Egs. (3) and (9) in Eq. (8) yields
V2H+V(%V,u-ﬂ)+%VEX(VXH)—72H=O. (11)
In the case where the constitutive parameters i and ¢ are not functions
of spatial variables, their gradients vanish and Egs. (10) and (11) are
simplified.
VZE-y!E=0, . (12)
VZH-y?*H=0. (13)
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These are the vector wave equations and are valid for each field component
in rectangular coordinates. .

V2E, —y1E, =0, (14
V2H,—y%H, =0. (15)

Here the subscript indicates the i component, where i stands for either x, y,
or z. Equations (14) and (15) are known as the scalar wave equations, or
Helmholtz equations.

1.4. One-Dimensional Wave Equation

It has been shown that both the electric and magnetic fields satisfy the
wave equation,

V2G-viG=0, vi=—wie, (1
where G=G(r) stands for either E or H. When G is a function of a single
variable, say z [i.e., G=G(2z)], Eq. (1) becomes

d*G
-7?G=0 ¥y
dz?
and each component of G satisfies the scalar wave equation
d’G, ,
- —v*G,; =0, i=x,y,0rz. 3
dzz Y y ( )

This is the one-dimensional wave equation. Let the trial solﬁtion of Eq. (3)
be v

Gi(2)=Gpe™, - “@
where G, is a constant and the quantity p is still to be determined. Then
substitution of Eq. (4) into Eq. (3) yields

(p2 _'Yz)GOe’z =0)
and therefore

p>—v*=0, 5)

p=zyvy. . (6)

Equatmn (5) is known as the characteristic equation of the problem, and its
roots, given by Eq. (6), are the characteristic valués (ot eigenvalues) of the
problem. The independent solutions corresponding to each characteristic
value are known as the characteristic functions (or eigenfunctions) of the
problem.

According to the theory of differential equations, the general solution of
Eq. (3) is a linear combination of the eigenfunctions,

G(2)=Ge " +G e™, @)
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where G;* and G,~ are two arbitrary constants of integration for the
second-order differential equation and can be determined by the specified
boundary conditions. G,* ¢G,”) is the amplitude of the positive (negative)
traveling wave, as will be explained.

The sum of all three spatial components gives the complete vector
expression of the field. In rectangular coordinates

G(z)=%(G/le " +G e™)+§Gr e " +Ge™)
+%#(G e " +G, e")
=G*e ¥ +G e”, (8)
where G * =XG* +§G* +2G,* and R is a unit vector in the x direction.
The complete expression of the field in spatial and time domains is then
given by
ﬁ(z,l)EG(z)ej“"=G+ej“”_’”+G‘ef”'+". (9)
The wave number or propagation constant y is a complex quantity in
general. From its definition, Eq. (1),

y=jwVpe

- =jwype(l+o/jwe) =a+B. ' (10)
Then
e~V =e e bz (1)

The real part of y (and consequently e ~**) specifies the magnitude of the
exponential function e ~*; a is therefore known as the attenuation constant,
measured in nepers per meter. The factor e ~##* prescribes the phase of the
function and consequently B is known as the phase constant, measured in
radians per meter.

Equation (9) may be expressed

G=G"%e %/ ~F2) 4 G~ grp/witha) (12)

The above solution involves functions of two variables, f(z, t)=e/(“**82),
Such a function can be easily investigated by keeping one of the variables
fixed and studying its variation with respect to the other variable. When
t=0, '

f(z,1=0)= e =), (13)
and when r=1,, some arbitrary value,
f(z’ [])=ej(“”| *Bz) =g 2Bz 2wt /B) =e +jBz, Ef(zl)’ (14)

where z, =z * w1, /B. Since z and z, differ by a constant quantity (* wt, /B),
f(z) and f(z,) must have the same shape. f(z,) is displaced from f(z) by an
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amount (*«t,/B) along the z axis. To be more specific, let
fr(2)=Ee/ 82| _ =e P, (15)
f +(‘.,'l)Eej(mt--ﬂr)lr_'l =e ~iB(z= w1 /B) = o ~JB21 (]6)
The rclinive location of f *(z) and f *(z,) can be established at some
reference point, say, the origin of each variable (z=0 and z, =0).
z,=0=z—wt;/B or z;=0 at z=wt/B. 17)
Thus f *(z,) is displaced by wt, /B in the positive z direction for positive
values of ¢,. Because f *(z, t)=e/“~#2) moves in the positive z direction
as time increases, it is known as a positive traveling wave function.
Similarly, f ~(z,#)=e/“**#2) is known as the negative traveling wave
Sfunction, since the function moves in the negative z direction as time

increases.
The speed at which the wave function travels,

ejwt:yz =¢ tazej(utzﬂz),
can be determined by observing the movement of a constant phase point.

Suppose at some reference point t=¢,, z=z, the wave function has some
phase of value M, so that

wtg*+Pzo=M. (18)

At a later time ¢, =7, + A¢, this constant phase point will have traveled to a
new position z; =z, +Az. The phase is then given by
?.M=wl, Bz, =w(ty +A1)2 (2o 2 Az)=(wly* Bzy) +wAI1 £ BAz
=M+wAr+BAz
or
wAt+BAz=0

Az/At=Fw/B. (19)
The left-hand side of Eq. (19) has the dimension of velocity and can be
interpreted as the average velocity of the constant phase point. In the

above derivation, ¢, and z; are entirely arbitrary and they may be chosen
as small (or large) as possible. If one takes the limit Ar—0, then

g, = lim Az/At=dz/dt=Fw/B. (20)
Ar—0
One calls v, the phase velocity of the traveling wave. The upper sign is for

the traveling wave in the negative z ditection, while the lower sign is for
the positive traveling wave.



8 Chapter 1. Electromagnetic Theory

1.5. Method of Separation of Variables

The scalar wave equation for a scalar function g(r) in rectangular coordi-
nates is

g g g

Bl - SR - SRR - S =0 ‘ . 1

ax?  dy? 922 ve )
or ,

1 82g 82g a2g) 3 '

1198 , 98 98 2.0, @

g ( ax? 8y2 9z° v 2)

The method of separation of variables assumes a trial solution to be the
product of three functions and each one is a function of a single variable
only,

8(x,y,2)=X(x)Y(y)Z(z). (3)
Substitution of the trial solution into Eq. (2) yields

1dx 14  1d°Z 2
:i:dxz"'?‘b)z +—Z—dzz —vy*=0. : (4)

Each of the first three terms can be a function of only one of the
independent variables and the fourth term is a constant. Equation (4)
requires the sum of all these terms to be constant, independent of all
variables. This can be so if and only if each term is a constant itself. This
can be verified by differentiating Eq. (4) with respect to one of the
variables, say, x:

d(1dx\ d _I_sz\_'_d 1d4°Z\ dy* _
Y &2/ dx

dx\ X g2 ) dx Z 42 dx

or

d{1d*Xx
E(}_az)_o. )

The quantity within the parentheses is thus a constant with respect to x.

But by definition X=X(x). and therefore (1/X)d*X/dx? is a constant,
2

say, v,

1d% _ d*x
X dx2 Tx or de

~ ¥, 2X=0. (©)




