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PREFACE TO THE CLASSICS EDITION

Although almost 25 years have elapsed since the manuscript of this book
was completed, it is somewhat comforting to see that the content of Chapters
1 to 6, which together could be summarized under the title “The Basic Error
Estimates for Elliptic Problems,” is still essentially up-to-date. More specif-
ically, the topics covered in these chapters are the following:

+ description and mathematical analysis of various problems found in
linearized elasticity, such as the membrane and plate equations, the
equations of three-dimensional elasticity, and the obstacle problem;

 description of conforming finite elements used for approximating
second-order and fourth-order problems, including composite and
singular elements;

+ derivation of the fundamental error estimates, including those in
maximum norm, for conforming finite element methods applied to
second-order problems;

+ derivation of error estimates for the obstacle problem;

+ description of finite element methods with numerical integration for
second-order problems and derivation of the corresponding error esti-
mates;

« description of nonconforming finite element methods for second-order
and fourth-order problems and derivation of the corresponding error
estimates;

« description of the combined use of isoparametric finite elements and
isoparametric numerical integration for second-order problems posed
over domains with curved boundaries and derivation of the correspon-
ding error estimates;

« derivation of the error estimates for polynomial, composite, and singular
finite elements used for solving fourth-order problems.
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xvi PREFACE TO THE CLASSICS EDITION

Otherwise, the topics considered in Chapters 7 and 8 have since undergone

considerable progress. Additionally, new topics have emerged that often
address the essential issue of the actual implementation of the finite
element method. The interested reader may thus wish to consult the
following more recent books, the list of which is by no means intended
to be exhaustive:

« for further types of error estimates, a posterion error estimates, locking

phenomena, and numerical implementation: Brenner and Scott (1994),
Wahlbin (1991, 1995), Lucquin and Pironneau (1998), Apel (1999),
Ainsworth and Oden (2000), Bramble and Zhang (2000), Frey and
George (2000), Zienkiewicz and Taylor (2000), Babuska and
Strouboulis (2001), Braess (2001);

« for mixed and hybrid finite element methods: Girault and Raviart
(1986), Brezzi and Fortin (1991), Robert and Thomas (1991);

+ for finite element approximations of eigenvalue problems: Babuska and

Osborn (1991);

« for finite element approximations of variational inequalities: Glowinski

(1984);
« for finite element approximations of shell problems: Bernadou (1995),
Bathe (1996);
« for finite element approximations of time-dependent problems: Raviart

and Thomas (1983), Thomée (1984), Hughes (1987), Fujita and Suzuki

(1991).

Last but not least, it is my pleasure to express my sincere thanks to Sara J.

Triller, Arjen Sevenster, and Gilbert Strang, whose friendly cooperation
made this reprinting possible.

Philippe G. Ciarlet
October 2001
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CHAPTER 1

ELLIPTIC BOUNDARY VALUE PROBLEMS

Introduction

Many problems in elasticity are mathematically represented by the fol-
lowing minimization problem: The unknown u, which is the displace-
ment of a mechanical system, satisfies

uelU and J(u)= 32{}](0),

where the set U of admissible displacements is a closed convex subset
of a Hilbert space V, and the energy J of the system takes the form

J(v)=ja(v,v)— f(v),

where a(-,-) is a symmetric bilinear form and f is a linear form, both
defined and continuous over the space V. In Section 1.1, we first prove a
general existence result (Theorem 1.1.1), the main assumptions being the
completeness of the space V and the V-ellipticity of the bilinear form.
We also describe other formulations of the same problem (Theorem
1.1.2), known as its variational formulations, which, in the absence of
the assumption of symmetry for the bilinear form, make up variational
problems on their own. For such problems, we give an existence
theorem when U = V (Theorem 1.1.3), which is the well-known Lax-
Milgram lemma.

All these problems are called abstract problems inasmuch as they
represent an ‘“‘abstract” formulation which is common to many exam-
ples, such as those which are examined in Section 1.2.

From the analysis made in Section 1.1, a candidate for the space V
must have the following properties: It must be complete on the one
hand, and it must be such that the expression J(v) is well-defined for all
functions v € V on the other hand (V is a “‘space of finite energy”). The
Sobolev spaces fulfill these requirements. After briefly mentioning some
of their properties (other properties will be introduced in later sections,
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as needed), we examine in Section 1.2 specific examples of the abstract
problems of Section 1.1, such as the membrane problem, the clamped
plate problem, and the system of equations of linear elasticity, which is
by far the most significant example. Indeed, even though throughout this
book we will often find it convenient to work with the simpler looking
problems described at the beginning of Section 1.2, it must not be
forgotten that these are essentially convenient model problems for the
system of linear elasticity.

Using various Green’s formulas in Sobolev spaces, we show that
when solving these problems, one solves, at least formally, elliptic
boundary value problems of the second and fourth order posed in the

classical way.

1.1. Abstract problems

The symmetric case. Variational inequalities

All functions and vector spaces considered in this book are real.

Let there be given a normed vector space V with norm ||, a
continuous bilinear form a(-,:): VX V- R, a continuous linear form
f: Vo R and a non empty subset U of the space V. With these data we
associate an abstract minimization problem: Find an element u« such that

ueclU and Ju)= LI‘IEIE J(v), (1.1.DH)

where the functional J: V>R is defined by
J:v € Vo J(v)=1a(v, v)— f(v). (1.1.2)

As regards existence and uniqueness properties of the solution of this
problem, the following result is essential.

Theorem 1.1.1. Assume in addition that

(1) the space V is complete,
(i) U is a closed convex subset of V,
(iii) the bilinear form a(-,-) is symmetric and V-elliptic, in the sense
that

Ja>0, VveV, alv|f<aly,v). (1.1.3)



Ch. 1, §1.1] ABSTRACT PROBLEMS 3

Then the abstract minimization problem (1.1.1) has one and only one
solution.

Proof. The bilinear form a(-, -) is an inner product over the space V,
and the associated norm is equivalent to the given norm |-|. Thus the
space V is a Hilbert space when it is equipped with this inner product.
By the Riesz representation theorem, there exists an element of € V such

that

Vve vV, f(v)=a(of,v),
so that, taking into account the symmetry of the bilinear form, we may
rewrite the functional as

J(v) =%a(v, v)~ a(of, v) = }alv — of, v — of ) ~ $a(af, of).

Hence solving the abstract minimization problem amounts to mini-
mizing the distance between the element of and the set U, with respect
to the norm Va(-, ). Consequently, the solution is simply the projection
of the element of onto the set U, with respect to the inner product a(-, +).
By the projection theorem, such a projection exists and is unique, since
U is a closed convex subset of the space V. O

Next, we give equivalent formulations of this problem.

Theorem 1.1.2. An element u is the solution of the abstract minimiza-
tion problem (1.1.1) if and only if it satisfies the relations

€U and VoEU, a(u,v—u)=f(v—u, (1.1.4)

in the general case, or

Voe U, a(u,v)=f(v),
uelU d { .
an alu, u) = f(u), (1.1.5)
if U is a closed convex cone with vertex 0, or
uelU and Vv€EU, a(u,v)=f(v), (1.1.6)

if Uis a closed subspace.

Proof. The projection u is completely characterized by the relations

u€U and VveU, a(of —u,v-u)<o, (1.1.7)
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ot

Fig. 1.1.1

the geometrical interpretation of the last inequalities being that the angle
between the vectors (of —u) and (v — u) is obtuse (Fig. 1.1.1) for all
v € U. These inequalities may be written as

Vve U, a(u,v—u)=alof,v—u)=f(v—u),

which proves relations (1.1.4).
Assume next U is a closed convex cone with vertex 0. Then the point

(u + v) belongs to the set U whenever the point v belongs to the set U
(Fig. 1.1.2).




