

., Y

Y 4

X\

The C++
Answer Book

Tony L. Hansen

AT&T Bell Laboratories
Lincroft, New Jersey

Addison-Wesley Publishing Company .
Reading, Massachusetts e Menlo Park, California ¢ New Yﬁork'
Don Mills, Ontario e Wokingham, England ¢ Amsterdam e Bonn
Sydney e Singapore ¢ Tokyo e Madrid ¢ San Juan

Library of Congress Cataloging-in-Publication Data

fiansen, Tony L.
The C++ answer book.

Bibliography: p.

Includes index.

1. C++ (Computer program language) I. Title
QA76.73.C15H368% 1990 005.13’3 88-7515

ISBN 0-~201-11497-6

This book was typeset in Times Roman and Courier by the author, using a Mergenthaler
Linotronic phototypesetter driven by an AT&T 3B2/700 running UNIX® System V.

UNIX and WE are registered trademarks of AT&T. DEC, PDP, and VAX are trademarks
of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft, Inc.

Permission is hereby granted for the non-commercial use of the software contained in this
publication. Any such copies of the software must contain the following statement:

Copyright © 1990 by AT&T Bell Telephone Laboratories, Incorporated
The C++ Answer Book

Tony Hansen

All rights reserved.

i

ATsT

Copyright © 1990 by AT&T Bell Telephone Laboratories, Incorporated

All rights reserved. No part of this publication may be reproduce: , stored in a retrieval
system. or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in

the United States of America. Published simultaneously in Canada.

ABCDEFGHIJ-MA-89

£ . 5/027/\

Foreword

A common problem for people wanting to learn C++ is to get hold of a body
of C++ code to read. To be useful, such a body of code must be of sufficient
quality to make it worth reading and must contain sufficient commentary to make
it reasonably obvious what is being done, how it is being done, and why it is
being done. ,

The C++ Answer Book provides such a body of code in the form of heavily
annotated solutions to the exercises in The C++ Programming Language. The
exercises vary in difficulty from something a novice can do in a minute to some-
thing an experienced programmer needs weeks to accomplish. The problems and
their solutions grow in complexity and sophistication to match the student’s
increasing grasp of the language and its associated programming techniques.

Tony Hansen’s solutions are based on a thorough grasp of the C++ program-
ming language and a solid background in real-life software construction. They are
also tested on several types of machines and operating systems (8086 MS-DOS
based, 6386 UNIX based, DEC Vax, AT&T 3B2, MIPS 1000 and Amdahl 5870)
using several different C++ compilers.

Naturally, some examples are just exercises to test a students grasp of language
features but in several cases the solution is a complete library of a quality rarely
surpassed in current production code. For example, there are classes for
extended-precision and arbitrary precision integer artithmetic and a library of
classes for co-routines and event-driven simulation.

In addition to the solution to the exercises, The C++ Answer Book contains
sections describing the language features introduced into C++ since the publication
of my book.

The C++ Answer Book can be an important compendium to The C++ pro-
gramming Language. It adds depth, detail, and realism to the presentation of the
language features and programming techniques and provides up-to-date informa-
tion about the language features found in the latest implementations of C++.

Murray-Hill, February 1989 Bjame Stroustrup

Acknowledgments

I would like to thank Jim DeWolf, senior computer scicnce editor at Addison-
Wesley, and John Thompson, his assistant, who gave considerable help and
encouragement throughout this project. Most of all. they were very patient. 1'd
also like to thank all of the people who have reviewed portions or all of this book.
fn particular, thanks go to Avi Gross, who endured a number of drafts, Glenn
Bradford, James Coplien, Margaret Ellis, Ron Hiller, Mark Horton. Andrew
Koenig, Chris Macey, Jonathan Shopiro, and Kathy Stark of AT&T. Keith Gorlen
and John Shaw of the National Institute of Health, Mark Linton of Stanford
University, and Mike Jones of Camegie Mellon University. Most of all, 1 would
like to thank Bjame Stroustrup for creating C++, his encouragement while I was
writing this book, and his many comments and suggestions.

Vi

Foreword
Acknowledgments
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Appendix A
Appendix B
References
Index

A Tour of The C++ Answer Book
Declarations and Constants
Expressions and Statements
Functions and Files

Classes

Operator Overloading

Derived Classes

Streams

New C++ Features

Header Files

ix

Contents

vii

39

87
147
225
349
433
521
557
561
565

Chapter 1

A Tour of
The C++ Answer Book

PR

This book is' a companion to The C++ Programming Language by Bjame
Stroustrup [Stroustrup 1986], hereafter referred to as the C++ book.

Why an Answer Book? o
While leamning a new computer programming language, one typically goes through
many steps before being able to write one’s own programs, including

« read the language’s manual (the C++ book),

« study cxnstmg programs, -

» speak with others who have wrmen programs in that language,

* compare solutions with some reference, and

¢ learn the paradigms, idioms, techniques and style of the language

It is assumed that the reader is in the process of completing the first step of
this list, reading the C++ book. Since C++ is such a new language, it is difficult
to complete the other steps — there are so few C++ programs available for perusal
and so few experienced C++ programmers. Of course, many C programs and pro-
grammers are available, and much can be learned from them since C++ is essen-
tially a superset of that language. However, that does not help in learning the new
features of C++. ‘

The C++ book includes a large number of exercises at the end of each chapter.
This book consists of a discussion of and solution to each of those exercises. It is
expected that the reader will work on each exercise before looking at the solution
presented here. Once the reader has done that, s/he should read through the
author’s solution and discussion. After comparing the solutions, the reader should
look for reasons for any differences.

The reader must realize that for each exercise, there is no one right answer. If
the reader’s solution is significantly different from the author’s, the reader should
look closely at the differences and then try to understand how both solutions work.

By working on the exercises and looking at the solutions presented here, the
reader will be helped in the remaining steps of learning the exciting new language
of C++. The end result for the reader is to become a better C++ programmer
more quickly.

2 The C++ Answer Book

The Exercises and Solutions

Each exercise begins with a copy of the exercise text from the C++ book, followed
immediately by the solution to that exercise. Also included is the estimate (from
the C++ book) of the difficulty of the exercise. The scale is exponential ~ it is
expected that a (*1) exercise might be solvable in 5 minutes, a (*2) exercise in an
hour, a ('*3) exercise in a day, a (*4) exercise in a week, and a (*5) exercise in a
month, Of course, the reader’s mileage may vary, depending on prior experience
and knowledge.

Each of the solutions uses only the features of the language that have been
introduced up to that point. For example, the solutions prior to Chapter 7 do not
make use of derived classes. Improvements are sometimes suggested that make
use of features introduced in a subsequent chapter.

All section and page references are relative 1o the C++ book — for example,
§4.3.2. Sections ir the Reference Manual, found at the end of the C++ book, are
denoted by a lowercase r — for example, §r.2.4.1. Because of the wide variety of
excrcises, some short and others considerably longer, there is a wide variety of
sointions. The shorter c¢xercises are generally meant to illustrate one or iwo
points, while the longer exercises are generally meant to give practical experience
writing real or almost-real modules.. Consequently, the solutions to the shorter
exercises contain more discussion than code, while the solutions to the longer
exercises include extensive examples of working code.

Attention is paid to the efficiency of various alternative solutions, as well 35
tieir portability and machine independence. Some discussion is also given iegard-
ing when it is appropriate to think about efficiency, and pointers are given w0
further texis on the subject.

All solutions have been tested using compilers based on the AT&T cfront
Translator, relcases 1.2 and 2.0, and run on a variety of machines running UNIX®
System V releases 2 and 3, and MS®-DOS. Changes necessary to run the pro-
grams on other systems, such as the Berkeley UNIX systems, are noted where
necessary.

While it is almost impossible to guarantee that the test cases have covered all
possibilities, every attempt has been made to ensure that the code shown here
compiles and runs comectly. To make certain that no mistakes were introduced
while moving the code into the manuscript, the code for the programs was elec-
tronically included directly from the program text, with nc manual copying per-
formed.

1. At publication, tests were being perforimed on the Zorweh C++ Compiler. release 1.51.

A Tour of 3

Dependencies on C

C++ depeads on a C library for most of its supporting functionality. The related
support libraries, however, differ from system to system. Unless otherwise indi-
cated, all of the solutions presented here use only those functions listed in the pro-
posed ANSI C Standard [ANSI 1988]% and the draft IEEE Portable Operating Sys-
tem Environment (also known as POSIX) [IEEE 1988]. Notable differences from
other major versions of the C language and its library are mentioned where
appropriate.

The Evolution of C++ ,

Since C++ is an evolving language, several modifications have been made to the
language since the publication of the C++ book. Appendix A introduces the new
features added to the language up to the publication date of this book. Some of
these features are due to additions to the language and others are due to a better
definition of the C language becoming available. With only a few minor excep-
tions, C++ is now considered a superset of ANSI standard C (see Appendix A for
details).

Although the author uses a compiler for 2 newer version of the language than
that described in the C++ book, none of the newer features of the language are
used for the initial answers to the exercises. Where appropriate, comments are
made about the use of the newer features of the language, or how newer features
may affect the solution presented. Sometimes a solution is presented again using
some of the newer features.

The Appendices

As just mentioned, Appendix A covers the additions made to the language since
the C++ book was written. Appendix B describes a few header files introduced
and used in the book, such as <swap.h>.

2. Anhough the ANSI C Standard is still a proposed standard, it is sufficiently close to publication “hat
the ANSI C features discussed in this book are unlikely to change.

Chapter 2

Declarations and Constants

2

Exercise 2.1 (*1)
Get the "Hello, world" program (§1.1.1) to run.

Creating Your First Program
The first step is to create the file that contains the program. Many excellent books
are available which show how to create, edit and manipulate files on the various
operating systems. The reference list shows some of the books on the market for
the UNIX Operating System. The file would be named something like hello.c,
hello.C, hello.cc, hello.cpp or hello.cxx, depending on the conventions chosen by
the compiler that is being used.'

The file hello.c should look like:

#include <stream.h>

~ main()
{

cout << "Hello, world\n";
}

On the author’s UNIX system, one would type:
$§ CC hello.c -o hello

CC is the command to invoke the C++ compiler. —o hello says to stored the
compiled program into a file named hello. To run the program, one would then
type:?

1. Naming C++ files with .c and .C is the convention most commonly used on UNIX Systems. Nam-
ing files with .cpp or .cxx is the convention chosen by two different MS-DOS compilers. The reader
should consult the documentation for his/her compiler to find the proper convention. Similarly,
header files are conventionally named using .h, .hpp and .hxx suffixes; this book will only use the .h
suffix.

2. Depending on the setting of the SPATH environmental variable, one may have to type:
$./hello

6 The C++ Answer Book §2.1

$ hello
Hellc, world
$

Improvements

An improvement to the preceding program would be to add a return 0; state-
ment at the end of main () so that the program doesn’t return a random value to
the invoking environment. An equivalent alternative is to call exit (0) at the end
of the program.’> The C language convention is that a zero return value indicates
success, while a non-zero return value indicates a failure of some type.
{Kernighan/Ritchie 19781 All further programs in this book include such a retumn
statement.

Another improvement is to indicate the arguments with which main() is
called: the first argument is an integer, indicating the number of parameters with
which the program was invoked; the second argument is a pointer to an array of
strings, which are the parameters with which the program was invoked. Even
when the arguments are not used, it is still better to declare the arguments of func-
tions. If the types of function arguments are declared without specifying names
for the argument. the C++ compiler must still verify the types of the arguments
wherever the function is invoked. All further programs shown in this book always
declare the types of the arguments to main ().* For further discussions on style,
see Exercise 3.17. Here is the preceding program again with these two additions:

#include <stream.h>

int main{int, char**)}

{

cout << "Hello, world\n";
return 0O;

Exercise 2.2 (*1)

For each of the declarations in §2.1, do the following: If the declaration is not a
definition, write a definition for it. If the declaration is a definition, write a
declaration for it that is not also a definition.

3. There is at least one commercially available C compiler for micro-computers which incorrecly
ignoi::s all retumn values from main (), assuming that the value should be zero. Later relcases of
that compiler have fixed this problem.

4. Scme invoking environmenis pass a third argument t main (). This argument will not be declared
or used n this book.

§2.2 Declarations and Constants 7

Definition: ch
The definition

char ch;

would have a declaration such as

extern char ch,

Definition: count
The definition

int count = 1;

would have a declaration such as

extern int count;

Definition: same
The definiticn

char *name = "Bijarne”;

would have a declaration such as

extern char *name;

Definition: complex
‘The definition

struct complex { float re, im; };

defines the members of the structure. The prograrn cannot declare variables of
type complex until the definition is seen, but it can declare pointers to those types
by first using a declaration of the structure:

struct complex;

complex *x;
It is in this fashion that circular dependencies are handled within two structure
definitions. The second structure is declared before the definition of the first struc-
ture so that the first structure can have a pointer to the second:

struct second;

struct first { second *p2; };

struct second { first *p2; };
C++ needs the first declaration in oder to know that the symbol second is a type
specification.

8 The C++ Answer Book 7 §2.2

XN
Definition: cvar
The definition

complex cvar;

would have a declaration such as

extern complex cvar;

Declaration: sqrt
The lack of a body in’

extern complex sqrt(complex);

indicates that this is ga declaration. A definition of the function would look like

#include <complex.h>
#include <math.h>
// determine sqrt of x + yi
complex sqgrt (complex z)
{
double x = real(z):
double y = imag(z);

// the easy ones: y == 0
if (y == 0.0)
if (x < 0.0)
return complex{0.0, sqrt{-x));

else
return complex(sqrt{x), 0.0);

// almost as easy: x == 0
if (x == 0.0)
if (y < 0.0)
{ ' -
double x = sqrt(-y / 2);
return complex(x, -x}:
}

else
{
double x = sqrt(y / 2); -
return complex{x, x):;
}

5. The extern keyword is optional in both function declarations and definitions. It is considered
good style to include the extern keyword in function declarations and to leave it out in function
definitions. If the function were declared static within the definition, then the static keyword
should also be used in he declaration instead of extern.

§2.2 Declarations and Constants 9

// convert to polar and take the root.

//

vy 2 2 1/2

// r=(x +y)

7/

// theta = © = arc tan (y / x)

//

// 1/2 1/2

// z =r {cos ©/2 + i sin ©/2)

double root_r = sqrt(sqrt(x * x + y * y));

double half t = atan2(y, x) / 2.0;

return complex(root_r * cos(half_t),
root_r * sin(half_t));

Declaration: error_number
The declaration

extern int error_number;

would have a definition of the integer indicated as

int error_number;

Definition: point
The typedef definition
typedef complex point;
does not have a separate declaration syntax. All type names declared through

typedef require a definition of what the type consists of; one cannot declare a
typedef without such a definition.

Definition: real
The function definition

float real(complex *p) { return p->re; }

would be declared as

extern float real (complex *p);

Definition: pi
The const definition
const double pi = 3.1415926535897932385;
does not have a separate declaration syntax. All constant declarations are by

default given static linkage and are required to include an initialization, making
them definitions. If, however, the yariable had been defined using

extern const double pi = 3.1415926535897932385;

‘then the variable can be referred to in another file by using the following declara- -
tion:

16 The C++ Answer Book §2.2

extern const double pi;.

Declaration: user
The declaration

struct user;

does not specify the members of the structure. A complete definition might be

struct user { char *name: int uid, gid; };

Exercise 2.3 (*1)

Write declarations for the following: a pointer to a character; a vector of 10
integers; a reference to a vector of 10 integers; a pointer to a vector of character
strings; a pointer to a pointer to a character; a constant integer; a pointer to a con-
stant integer; and a constant pointer to an integer. Initialize each one.

Declarations are best created from the inside out while reading the description
from left to right.8 .

Declaring a Pointer to a Character -
A pointer to a character starts with a pointer:

*pc
then the type to which it points is added:

char *pc

To initialize the pointer, the address of a character is needed:

char c; // character
char *pc = &c; // pointer to a character

Declaring a Vector of 10 Integers
A vector of 10 integers starts with the vector:

ivl]

then adds the dimension:

6. There is a public domain program named c++decl which will convert between an English
representation of a C++ declaration and the equivalent C++ syntax. For example, given the com-
mand, declare x as pointer to char, c++decl will respond with char *x, and given the command
explain char *x, c++decl will respond with declare x as pointer to char.

§2.3 . Declarations and Constants 11

iv([10}
and finally what the vector contains:
" int iv(10]}
To initialize the vector requires a list of elements:’

// vector of 10 int
int iv{10)] = { O, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

Declaring a Reference to a Vector of 10 Integers
A reference to a vector of 10 integers starts with the reference:

*&riv
then adds the vector:

&rivi}

and the dimension:
&riv{10)

and finally the type of vector:

int &riv[i0]
To initialize this reference requires the name of another variable of the same type
without the reference: o

int &riv{10] = iv; // reference to vector of 10 ints

Declaring a Pointer to a Vector of Character Strings
There are two possible interpretations of this declaration. The first treats the vec-
tor as before, declaring it with a size. The second treats the vector as a dynamic,
unbounded object. In C++, an unbounded vector is created using a pointer to the
first element of the vector; it is allocated using the new operator.

(Interpretation 1) A pointer to a vector of character strings starts with the
pointer:

*psv
It then adds the array:
(*psv) []

(The extra parentheses are necessary because of the precedence rules) A size is
required, so let us choose 4. Add its size:

. Any elements not listed will be initialized to zero. See §r8 6 and §r 8.6.1 for funher mformauon on
initialization of external and static variables. :

