DESIGNING AND PROGRAMMING

~ MODERN COMPUTER SYSTEMS

Volume I

SUPERCOMPUTING SYSTEMS:
RECONFIGURABLE
ARCHITECTURES

Svetlana P. Kartashev

Steven 1. Kartashev b

DESIGNING AND PROGRAMMING

MODERN COMPUTER SYSTEMS
Volume Il ————
SUPERCOMPUTING SYSTEMS:
RECONFIGURABLE
ARCHITECTURES

—_—======— Svetlana P. Kartashev

Internationa I‘Nm ting Institute

E= S

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Libeary of Congress Cataloging-in-Publication Data

(Revised for vol. 2)

Designing and programming modern computers and systems.
Voi. 2— has title: Desig
modern computer systems.
Includes bibliographies and indexes.
Contents: v. 1. LSI modular computer sysiems—
v. 2 Supercomputing systems.

1. Computer engineering. 2. Computer architecture.
Kartashev, Svetl I K hev, Steven 1.

g and programmiing -~

I 4

i1, Title: Designing and programming modem comp

?'slcms.

K7885.D474 1982 004 81-21078

Editorial/production supervision: Raeia Maes
Manufacturing buyér: Mary Ann Gloriande

= © 1989 by Prentice-Hall, Inc.
= A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

5 RO .\t{
o g,
£+ %
Printed in the United States of Amdrica &= " . . =
10987 65432 11’\\." L BN
N
e

ISBN 0-13-201435-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Foreword

BY
GENE MYRON AMDAHL

This is the second volume in the serics, Designing and Programming Modern
Computer Svstems, initiated by Prentice Hall in 1982.

This volume deals with supercomputing in the context of reconfigurable archi-
tectures. The important class of these architectures, called dynamic architectures
and invented by Svetlana P. Kartashev and Steven I. Kartashev in the 1970s, allows
dynamic partitioning of the resources into different sets of computers with varied
word sizes and automatic assumption of various computer architectures under the
software control.

The authors' vision is to define a dynamic architecture as given hardware box
assembled from processor and memory units that can be formed into differing
computing structures under the program control. These structures are: multicom-
puters/multiprocessors, arrays, pipelines, networks, and mixed. Each structure is
characterized by parameters variability extended to the architectural type of the
structure (multicomputer, array, pipeline, network, mixed), the word sizes of its
units (dynamic computers, processor elements, pipeline stages, network nodes), the
number of units included in the structure, and the interconnections between con-
current structures formed dynamically.

The major objective of this approach is to improve performance through more
extensive utilization of the available hardware resources than is possible to achieve
in modern computer systems. Currently, available supercomputers achieve peak
performance only for particular portions of computations being underutilized a
significant portion of their time, A

There are many reasons for this performance degradation, but the major one is
associated with the mismatch between the hardware computing structure and the
task being computed.

Xiii

xiv Foreword

Sources of this mismatch are:

© Bit size mismatch: The bit size requirements of the program are smaller or
farger than that of the hardware resources that compute this program. If
these requirements are smaller, the difference in bit sizes extended to the
processor and memory resources becomes unused and leads to performance
degradation caused by the failure of the computer hardware to utilize it. If
these requirements are larger, the computation should proceed in a much
slower and less precise floating-point form, leading again to a performance
_ degradation as a result.
® Concurrency mismatch: The program requirements on the number of par-
allel instruction and data streams are smaller or larger than those of the
hardware resources. If these requirements are smaller, the idleness of the
" unused portion of the hardware leads to slowing the time of the execution of
other concurrent programs (tasks) in the mix. If these requirements are
larger, parallel information streams (instruction and/or data) must be com-
puted sequentially, again leading to an increase in the overall computation
time.
® Interconnection mismatch: The program requirements on the interconnec-
tion of the used resource units (processor and memory resources involved in
computations) mismatch the available interconnections in a computer sys-
tem,

As a result, the data exchanges among engaged resources take. much longer
than if these resources were connected optimally.

The only way to overcome mismatches that create a nonoptimal use of the
hardware resources is through reconfigurable interconnections when the resources
are partitioned dynamically into a varied number of computing structures each of
which has the.bit size also varied via software.

Another problem that must be solved is the development of very fast recon-
figuration from one.computing structure to another in order to eliminate any recon-
figuration overhead from the total computation time. This radical departure from the
conventional computation process requires development of program preprocessing
techniques aimed at finding the optimal architectural structures that can be used in
computations. Thereafter, these structures will be assumed automatically via soft-
ware with the use of developed reconfiguration methodology.

What will happen as a result is that the same hardware resource will perform
automatic switches from one architectural configuration to another in order to
achieve a significant performance improvement because of the creation of tightly
fitted computer structures and the release of redundant resources into computations
of new programs.

Therefore, development of the software which, on the one hand, accomplishes
actual system reconfigurations and which, on the other hand, finds a sequence of
matching hardware computing structures that must be assumed in computations
becomes the comerstone of this approach.

Foreword xv

The authors’ solution to this formidable task involves developing the follow-
ing:

¢ Comprehensive reconfiguration methodology which allows the authors to
perform very fast reconfigurations in dynamic multicomputer systems/muiti-
computer networks and fault-tolerant reconfigurations. The latter are aimed
at turning off the faulty modules from computations. The structure used
previously is preserved. Its performance is organized on a reduced level
with faulty modules being turned off.

® Program preprocessing techniques for dynamic multicomputer systems
and multivcomputer networks. The algorithms are developed to allow auto-
matic construction of the sequence of architectural states that can be
assumed during computations. The authors call this sequence the recon-
figuration flow chart. Each state of the reconfiguration flow chart is under-
stood as a set of concurrent dynamic computers with the word sizes selected
by the programmer via software. The authors present techniques to accom-
modate both static programs and those arriving during computations
(dynamic programs). For the dynamic programs, the flow chart constructed
for static programs is modified by inserting dynamically created states that
take into account the resource requirements of dynamic programs.

All in all, this volume contains highly original research material on supercom-
puting systems with dynamic architecture for use by hardware and software engi-
neers in designing such systems and in performing their extensive software
development.

The end result is to take advantage of the reconfigurability of the hardware for
unlocking a new and heretofore unused source of performance improvement for the
applications with very demanding requirements on supercomputer power, of which
mission critical computations is a particular case.

Preface

This book is dedicated 10 the description of the principal software tools for dynamic
architectures, which are called reconfiguration software. We will discuss the two
categories of reconfiguration software:

1. reconfiguration methodology
11. reconfiguration flow chart

Another major subject of this book is associated with extensive algorithm .
development aimed at performing comprehensive comparison computation made by
dynamic architectures with those performed by conventional systems having similar
resource complexity. The results of these comparisons are either in concrete speed-
up figurcs expressed in percentages or in .other valid demonstrations of superior
computations shown -by dynamic architectures, if concrete numerical percentages
cannot be obtained due to the multiplicity of alternative ways computations can be
exhibited by conventional systems.

The composition of this book is as follows. Chapter 1, Motivation:

a. Introduces the problem of mission-critical Supercomputing systems which
can be resolved only with the use of dynamic architectures.

b. Finds desirable characteristics for dynamic architectures in mission-critical
applications.

c. Shows that dynamic architectures possess powerful capabilities for imple-
menting most useful architectural features for reconfigurable architectures
in mission-critical applications.

xvii

xviii Preface

Chapter 1, Reconfiguration Software, discusses the two categories of recon-
figuration software introduced above. It gives a comprehensive description of the’
reconfiguration methodology applicable for architectural and fault-tolerant recon-
figurations. General problems of these reconfigurations are presented in Sec. 1. For
the architectural reconfigurations introduced in Sec. 2, the following techniques are
introduced:

a. Multicomputer reconfigurations
b. Network reconfigurations

For fault-tolerant reconfiguration (Secs. S through 7), we discuss the formation
of gracefully degraded reconfigurable binary trees with the use of reconfigurations.

Chapter III introduces the software techniques leading to an automatic con-
struction of the reconfiguration flow chart for two types of systems; (a) dynamic
multicomputer systems (Secs. 3 and 5) and (b) dynamic networks organized as
reconfigurable binary trees (Sec. 4).

For dynamic multicomputer systems, the construction of a reconfiguration flow
chart leads toward the minimization of program delays and the total time of execut-
ing all programs from a given program mix. For reconfigurable binary trees, the
construction of such a flow chart leads to a significant data-exchange optimization,
because it is possible to select such tree configurations as consecutive states in this
flow chart in which each pair of nodes with large data exchanges can be connected
with the minimal communication path of length 1 (i.c.. these two nodes become
adjacent in a selected tree configuration).

Also, for dynamic multicomputer systems, we discuss two types of recon-
figuration flow charts: static, in Sec. 3, and dynamic, in Sec. 5. A static recon-
figuration flow chart takes into account the reconfiguration requests of those
programs called static that are available in the system before the beginning of the
procedures aimed at automatic construction of this flow chart.

A dynamic reconfiguration flow chart considers reconfiguration requests of
those programs called dynamic that arrive at the system when it is executing a
reconfiguration flow chart. Thus a dynamic reconfiguration low chart can be con-
ceived as a modified static flow chart with newly added architectural states créated
dynamically that take into account reconfiguration requests of dynamic programs.

The objectives of Chapter IV are:

1. To outline the effect of dynamic reconfiguration on some popular ADA
constructs

2. To give memory management techniques for data structures in relational
data bases that are created dynamically

Section 1 is dedicated to handling, in dynamic architectures, such well-known ADA
constructs as:

a. ADA packages (Sec. 1.1)

Preface Xix

b. Task rendezvous (Sec. 1.2)
¢. Exceptions handling (Sec. 1.3)

Section 2 introduces the topic of memory allocation in a relational data base imple-
mented as a dynamically reconfigurable multiprocessor system including content-
addressable memories. The description of such a relational data base is made in Sec.
2.2. Section 2.3 performs the classification of all allocation schemes. Section 2.4
addresses the problem of file interference and Secs. 2.5 and 2.6 devise optimal
allocations for various types of files introduced in Sec. 2.3.

Chapter V, Algorithm Development, discusses the organization of computa-
tions in dynamic architectures for the following classes of algorithms:

a. General-purpose program mix made of concurrent programs with no data
dependencies (Sec. 2.1)

b. Parallel construct fork—join (Sec. 2.2)
c¢. Producer—consumer algorithms (Sec. 3)

d. Array computations encountered in the solution of relaxation equations and
pulse deinterleaving algorithms (Sec. 4)

e. Data-base management in tree data bases (Sec. 5)
f. Real-time sorting (Sec. 6)
g. Tree-structured algorithms (Sec. 7)

Finally, following Chapter V we present the conclusions to this volume. Over-
all conclusions are divided into the following topical areas presented in respective
sections:

a. Conclusions on the reconfiguration. flow chart and reconfiguration meth-
odology

b. Conclusions on algorithm development

Svetlana P. Kartasl;ev
Steven 1. Kartashev

Contents.

FOREWORD xiii
by
Gene Myron Amdahl

" PREFACE xvii

Chapter |

MOTIVATION: MISSION-CRITICAL COMPUTING,

PROBLEMS AND SOLUTIONS 1

1 ADAPTABLE SOFTWARE FOR MISSION-CRITICAL COMPUTERS 1

1.1 Dedicated and Adaptable Supercomputing Systems 2
1.2 Two Types of Adaptable Software 3

1.2.1

1.2.2
1.2.3
1.2.4

Reconfiguration Software for Adaptable Supercomputing Systems:
Classification 3

Assessment of Different Categories of Reconfiguration Softiware 5
Retargetable Software 6

Summary: Merger of Two Tvypes of Adaptable Software 7

il

iv

2

Contents

DESIRABLE ARCHITECTURAL CHARACTERISTICS OF MISSION-
CRITICAL SUPERCOMPUTING SYSTEMS 8

2.1 Dynamic Precision of Operation 8
2.2 Dynamic Instruction and Data Parallelism &
2.3 Capability of Changing the Type of Architecture 9
2.4 Enbanced Fault-Tolerance Accomplished Via Dynamic Replacement
and Graceful Degradation 9
2.5 Summary: Modularity and Reconfigurability of the System Architecture /0

DYNAMIC ARCHITECTURE AS A POWERFUL MEANS OF
IMPLEMENTING MOST USEFUL ARCHITECTURAL FEATURES OF
MISSION-CRITICAL SUPERCOMPUTING SYSTEMS 10

3.1 Major Drawbacks of Commercial Supercomputing Systems //

3.2 Classes of Cost-Effective Applications for Dynamic Architectures 1/

3.3 Comparative Evaluation Figures /4

3.4 Summary: Brief Analysis of Cost-Efficient Applications for Dynamic
Architecture 16

Chapter I

RECONFIGURATION SOFTWARE: RECONFIGURATION
METHODOLOGY 19

INTRODUCTION 19
ARCHITECTURAL RECONFIGURATION ‘ - 20
DYNAMIC RECONFIGURATIONS IN MULTICOMPUTER SYSTEMS 22

3.1 Sequence of Reconfiguration Steps for Multicomputer Systems 22
3.2 Resolution of Reconfiguration Conflicts for Multicomputer Architecture 24

3.2.1 Condition for Reconfiguration C onflict 24
3.2.2 Conflict Resolution: Overall Organization 25
3.2.3 Organization of Architectural iterrupt 30

3.3 Task Synchronization 38

3.3.1 No Conflict Reconfiguration 38
3.3.2 Conflict Reconfiguration 38
3.3.3 Softwarc Organization 39

3.4 Access of Variable Codes and Establishment of New Interconnections
in the Network 4/

341 Description of a Dvnamic Architecture with Minimal Complexite 41
3.4.2 Storage of Control Codes 43

35

Contents

3.4.3 Establishment of New Interconnections of the Interconnection
© Network 44
General Observations About Program Start-Up 45

DYNAMIC RECONFIGURATIONS FOR MULTICOMPUTER
NIETWORKS

4.1
4.2
43

45

4.6

4.7

4.8

4.9

Difference Between Network and Multicomputer Reconfigurations 47
Contribution and Composition 49
Motivation 5/

4.3.1 Overall Outline of Cost-Effective Computations for DMN,
Assuming Rings, Trees. and Stars 51

4.3.2 Two Factors of Performance Optimization 52

4.3.3 Concurrent Reconfiguration 54

4.3.4 Contribution of Shift-Register Theory 56

4.3.5 Problem of Network Analysis and Synthesis 59

Classification Among Network Structures: Overview and Examples 6/

4.4.1 Single and Cémposire SRVB 61
4.4.2 Reconfiguration of a SRVB into a Given Shifting Format, SF 62
4.4.3 Types of Network Structures 64 .

Single Ring Structures: Analysis and Synthesis 69

" 4.5.1 Generic Ring 70

4.5.2 Bias Structure 71

4.5.3 Period of Generic Ring 73

4.5.4 Transforming a Generic Ring into Another Ring of Single Ring
Structure 77 .

4.5.5 Quantitative Characterization of a Single Ring Structure 82

4.5.6 Analysis and Synthesis of Single Ring Structures 84

Composite Ring Structures 87

4.6.1 Multiple Single Rings 88
4.6.2 Arbitrary Shifting Formats 90

Single Tree Structures 94

4.7.1 Bias Structure for a Noncircular Shifting Formar 95
4.7.2 Synthesis of the Root 97
4.7.3 Synthesis of an Arbitrary Tree Node (Non-leaves or Leaves) 100

Efficient Internode Communications in Reconfigurable Binary Trees /03

4.8.1 Communication Circuits Inside Transit Node 103
4.8.2 Node-Root Communications 108)
4.8.3 Node-Node Communication, NN, 113

Conclusions on Introduced Techniques for Network Reconfigurations
and Communications //6

4.9.1 Assessment of Introduced Reconfiguration Methodology 116
4.9.2 Assessment of Introduced Communication Techniques 117

vi Contents

5 FAULT-TOLERANT RECONFIGURATION IN A RECONFIGURABLE

BINARY TREE: OVERVIEW 118
5.1 Circuit- and Module-Level Reconfigurations /78
5.2 Gracefully Degraded Binary Trees /19

5.2.1 Type | Graceful Degradation 123
5.2.2 Type 2 Graceful Degradation 123

5.3 Two Approaches for Tree Reconfiguration /24

6 SOFTWARE RECONFIGURATION METHODOLOGY FOR FAULT-
TOLERANT RECONFIGURABLE BINARY TREES 12§

6.1 Section Composition /25
6.2 Level and Mixed Reconfigurations in a Binary Tree /26

6.2.1 Recursive and Successor-Preserving Structure, P, of Tree Nodes
Generated with SRVB 126

6.3 Fault-Tolerant Reconfigurations /33

6.3.1 Faulty Nonleaves and Fault-Free Leaves 133
6.3.2 Faulty Leaves and Nonleaves 135
6.3.3 Conclusions 141

7 CONCLUSIONS TO CHAPTER II 142

7.1 Architectural Reconfiguration /42
7.2 Fault-Tolerant Reconfigurations 43

Chapter il
RECONFIGURATION FLOW CHART 145

1 INTRODUCTION 145
2 STATIC RESOURCE ASSIGNMENTS 146
3 RESOURCE ASSIGNMENT FOR DYNAMIC

MULTICOMPUTER SYSTEMS 146

3.1 Analysis of Bit Sizes and Array Dimensions of Computed Variables 147

3.1.1 Classification of Nodes in a Program Graph 148

3.1.2 Alogrithm for Constructing a Program Graph (Algorithm 1) 149
3.1.3 Number of Loop Iterations 154 '

3.1.4 Undefined Parameter of Iterations 156

3.1.5 Maximal and Intermediate Bit Sizes of Computed Variables 157
3.1.6 Finding Bit Sizes of Graph Nodes 157

3.1.7 Array Dimensions of Variables Computed in Graph Nodes 159

Contents

3.2 Resource Diagrams for Individual Programs /59

3.2.1 Bit-Size Diagram of a Program Graph 160

3.2.2 Alignment of the Bit Size Diagram 160

3.2.3 Time to Execute One Task in a Dynamic Computer 161
3.2.4 P-Resource Diagram 165

3.3 Adaptive Assignment of System Resources [66

3.3.1 Priority Assignment 166
1 3.2 Construction of the CE Resource Diagram 169

3.4 DC Group Flow Chart 18/
3.5 ME Resource Diagram 184

3.5.1 Procedures for Mapping Data Arrays onto Primary Memory
of a DC Group 185
3.5.2 Procedures for Mapping Instruction Arrays onto Primary
Memory of a DC Group 185
3.6 Conclusions 19/

STATIC RESOURCE ASSIGNMENTS IN RECONFIGURABLE
BINARY TREE

4.1 Data Exchange Optimization: Overview and Examples /93

4.].1 Execution of Table ll1.4 in a Static Binarv Tree |94
4.1.2 Execution of Table 1Il.4 in Dynamc Tree Configurations 197
4.1.3 Summary 199

4.2 Data Exchange Optimization Algorithm: Overall Structure 199
4.2.1 Description of One lteration of Data-Exchange Optimization 199

4.3 General Concurrency Test Between Two Data Paths in Reconfigurable
Binary Tree 200

4.3.1 Paths Concurrency in a Reconfigurable Binary Tree 200
4.3.2 Fust Path Concurrency Test 202

4.4 Path Durations in Reconfigurable Binary Tree 2170
4.5 Handling the Data-Exchange Table with the Use of Process 2 21/
4.6 Complexity of the Two Processes (Processes 1 and 2) 2/6

4.6.1 Complexity of Process I 216
4.6.2 Complexity of Process 2 217

4.7 Conclusions 218

DYNAMIC RESOURCE ASSIGNMENTS

5.1 Static and Dynamic Programs 2/9

5.2 Dynamic Assignment: Bricf Overview and Material Composition 220
5.3 Assigned and Nonassigned Programs 22/

5.4 Conditions of Dynamic Assignment 222

5.5 Two Types of Queues of Start-Up Messages 223

vii

191

219

viii Contents

5.51 Assigned Queue 223
5.5.2 Nonassigned Queue of Start-Up Messages 224

5.6 Interaction Between Assigned and Nonassigned Queues 225

5.6.1 Reassignment of Architcctural States 229

5.6.2 Creation of a New Architectural State 229

5.6.3 Absorption of the NAQ Queue 233

5.6.4 Creation of the Architectural Sequences for Long and Tusked
Programs 238

5.7 Program Start-Up in the New Architectural State 244

5.7.1 Organization of the One-to-One Correspondence Between the
Reconfiguration Flow Chart and the Assigned Queue of SUM
Messages 244

5.7.2 Distribution of Start-Up Information Among Dynamic
Computers 246

6 CONCLUSIONS TO CHAPTER IiI 216

6.1 Optimization Criteria Used in Resource Assignment for Different
Computing Structures 246

Chapter IV
DYNAMIC COMPILER 249 °

1 THE EFFECT OF DYNAMIC RECONFIGURATION ON ADA
LANGUAGE CONSTRUCTS 249

1.1 Ada Packages 250

1.1.1 Visible Part 250

1.1.2 Private Information 25! ’

1.1.3 Creation of Ada Packages in Dynamic Architecture 252
1.1.4 Access 10 a Visible Part of the Package 252

1.1.5 Selective Access 1o a Private Part of the Packuge 253
1.1.6 Conclusions 255

1.2 Task Rendezvous 255

1.2.1 Description of Task Rendezvous Construct 255
1.2.2 Organization of Task Rendezvous in Dynamic Architecture 258
1.2.3 Assessment of Adopted Organizations for Task Rendezvous 265

1.3 Exceptions Handling 266

1.3.1 Ada Exceptions 266

1.3.2 Two Types of Numeric Errors 267
1.3.3 Insufficient Range 267

1.3.4 Insufficient Accuracy 268

Contents ix

/.25 Comparative Assessment of Floating-Point Versus Fixed-Point
Performance from the Viewpoim of Conventional Exception
Handling 269

[.2.6 Handling Numcric Errors by Dynamic Architecture 269

1.3.7 Handling Nwmceric Errors in Dynamic Architectures: Assessment 273

MEMORY ALLOCATION IN RELATIONAL DATA BASES 273

Motivatton 273

201 Usefulness of Content-Addressable Memories for Handling High-
Performance Relational Data Bases 274

2.2 Relational Data Base 276

220 Defnition of a Relational Data Base 277

2,22 The Use of RAMSs for Storing a Relational Data Base 277

2.2.3 The Use of Content-Addressable Memories 278

224 Reconfigurable Multiprocessor Architecture for Handling a Relational

Data Base 278
2225 Problem of Memory Allocation 280

2.3 Classification of Alocation Schemes 287

221 Minimal and Nonminimal Data Files 281

2,32 Classification of Files That Can Be Stored in the CAM Memory 281

2.3 3 Parallel Operation of Several CAM Memories 285
2.4 Structure of a Minimal File and File Interference Problem 285

2.4.1 Structure of the Minimal File 286

2.4.2 File Interference Record 287

2.4.3 Fetches of Minimal File During One Memory Cyele 287 ‘
2.5 Nonintertering File Allocation for Minimal Processor Files 288
2.6 Nonminimal Files * 290

2.6.1 Regular Non-Minimal Files 291

2.6.2 rregular Files 303
2.7 Conclusions: Assessment of Allocation Methodology Presented 306
CONCLUSIONS TO CHAPTER IV 308

Chapter V
ALGORITHM DEVELOPMENT 309

INTRODUCTION) 309
GENERAL-PURPOSE PARALLEL ALGORITHMS 31l
2.1 General-Purpose Program Mix 31/
2.2 Parallel Construct Fork-Join 372

X

Contents

2.2.1 Definition of Fork-Join Construct 314

2.2.2 Execution of the Fork-Join Construct 315

2.2.3 Maich Berween Program Resource Requirements and System
Reconfiguration 315

2.2.4 Mismatch Berween Program Resource Requirements and System
Reconfiguration 317

2.2.5 Fork-Join Requiremenis for the Mixed Mismaich 317

2.2.6 Execution of the Mixed Mismatch Fork-Join by the System with
Dynamic Architecture 318

2.2.7 Execution of the Mixed Mismatch Fork-Join by the Conventional ‘

System 326
PRODUCER-CONSUMER ALGORITHMS

3.1 General Bus Organization 328

3.1.1 Data Exchanges Between Dynamic Compuiers 329.
3.1.2 Distributed Operating System 336

3.2 Data Exchange Instructions 339
3.3 Organization of Programming Construct Fetch-Store 340

3.3.1 Four-Step Compwuation of FS 341
3.3.2 Performance Evaluation 342
ARRAY COMPUTATIONS
4.1 Dynamic Array Architecture 344

4.2 Selected Armay Algorithms 347
4.2.1 Relaxation Equations 347

4.2.2 Pulse Deinterleaving 357
DATA BASE MANAGEMENT IN TREE DATA BASES

REAL-TIME SORTING

6.1 Motivation 368
6.2 Computation Requirements 369
6.3 Most Useful Configurations of a Multicomputer Network 369

DIVIDE-AND-CONQUER OR TREE STRUCTURED ALGORITHMS

CONCLUSIONS TO THE BOOK

327

367

n

n

