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Foreword

BY
GENE MYRON AMDAHL

This is the second volume in the serics, Designing and Programming Modern
Computer Svstems, initiated by Prentice Hall in 1982.

This volume deals with supercomputing in the context of reconfigurable archi-
tectures. The important class of these architectures, called dynamic architectures
and invented by Svetlana P. Kartashev and Steven I. Kartashev in the 1970s, allows
dynamic partitioning of the resources into different sets of computers with varied
word sizes and automatic assumption of various computer architectures under the
software control.

The authors' vision is to define a dynamic architecture as given hardware box
assembled from processor and memory units that can be formed into differing
computing structures under the program control. These structures are: multicom-
puters/multiprocessors, arrays, pipelines, networks, and mixed. Each structure is
characterized by parameters variability extended to the architectural type of the
structure (multicomputer, array, pipeline, network, mixed), the word sizes of its
units (dynamic computers, processor elements, pipeline stages, network nodes), the
number of units included in the structure, and the interconnections between con-
current structures formed dynamically.

The major objective of this approach is to improve performance through more
extensive utilization of the available hardware resources than is possible to achieve
in modern computer systems. Currently, available supercomputers achieve peak
performance only for particular portions of computations being underutilized a
significant portion of their time, A

There are many reasons for this performance degradation, but the major one is
associated with the mismatch between the hardware computing structure and the
task being computed.
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Sources of this mismatch are:

© Bit size mismatch: The bit size requirements of the program are smaller or
farger than that of the hardware resources that compute this program. If
these requirements are smaller, the difference in bit sizes extended to the
processor and memory resources becomes unused and leads to performance
degradation caused by the failure of the computer hardware to utilize it. If
these requirements are larger, the computation should proceed in a much
slower and less precise floating-point form, leading again to a performance
_ degradation as a result.
® Concurrency mismatch: The program requirements on the number of par-
allel instruction and data streams are smaller or larger than those of the
hardware resources. If these requirements are smaller, the idleness of the
" unused portion of the hardware leads to slowing the time of the execution of
other concurrent programs (tasks) in the mix. If these requirements are
larger, parallel information streams (instruction and/or data) must be com-
puted sequentially, again leading to an increase in the overall computation
time.
® Interconnection mismatch: The program requirements on the interconnec-
tion of the used resource units (processor and memory resources involved in
computations) mismatch the available interconnections in a computer sys-
tem,

As a result, the data exchanges among engaged resources take. much longer
than if these resources were connected optimally.

The only way to overcome mismatches that create a nonoptimal use of the
hardware resources is through reconfigurable interconnections when the resources
are partitioned dynamically into a varied number of computing structures each of
which has the.bit size also varied via software.

Another problem that must be solved is the development of very fast recon-
figuration from one.computing structure to another in order to eliminate any recon-
figuration overhead from the total computation time. This radical departure from the
conventional computation process requires development of program preprocessing
techniques aimed at finding the optimal architectural structures that can be used in
computations. Thereafter, these structures will be assumed automatically via soft-
ware with the use of developed reconfiguration methodology.

What will happen as a result is that the same hardware resource will perform
automatic switches from one architectural configuration to another in order to
achieve a significant performance improvement because of the creation of tightly
fitted computer structures and the release of redundant resources into computations
of new programs.

Therefore, development of the software which, on the one hand, accomplishes
actual system reconfigurations and which, on the other hand, finds a sequence of
matching hardware computing structures that must be assumed in computations
becomes the comerstone of this approach.



Foreword xv

The authors’ solution to this formidable task involves developing the follow-
ing:

¢ Comprehensive reconfiguration methodology which allows the authors to
perform very fast reconfigurations in dynamic multicomputer systems/muiti-
computer networks and fault-tolerant reconfigurations. The latter are aimed
at turning off the faulty modules from computations. The structure used
previously is preserved. Its performance is organized on a reduced level
with faulty modules being turned off.

® Program preprocessing techniques for dynamic multicomputer systems
and multivcomputer networks. The algorithms are developed to allow auto-
matic construction of the sequence of architectural states that can be
assumed during computations. The authors call this sequence the recon-
figuration flow chart. Each state of the reconfiguration flow chart is under-
stood as a set of concurrent dynamic computers with the word sizes selected
by the programmer via software. The authors present techniques to accom-
modate both static programs and those arriving during computations
(dynamic programs). For the dynamic programs, the flow chart constructed
for static programs is modified by inserting dynamically created states that
take into account the resource requirements of dynamic programs.

All in all, this volume contains highly original research material on supercom-
puting systems with dynamic architecture for use by hardware and software engi-
neers in designing such systems and in performing their extensive software
development.

The end result is to take advantage of the reconfigurability of the hardware for
unlocking a new and heretofore unused source of performance improvement for the
applications with very demanding requirements on supercomputer power, of which
mission critical computations is a particular case.



Preface

This book is dedicated 10 the description of the principal software tools for dynamic
architectures, which are called reconfiguration software. We will discuss the two
categories of reconfiguration software:

1. reconfiguration methodology
11. reconfiguration flow chart

Another major subject of this book is associated with extensive algorithm .
development aimed at performing comprehensive comparison computation made by
dynamic architectures with those performed by conventional systems having similar
resource complexity. The results of these comparisons are either in concrete speed-
up figurcs expressed in percentages or in .other valid demonstrations of superior
computations shown -by dynamic architectures, if concrete numerical percentages
cannot be obtained due to the multiplicity of alternative ways computations can be
exhibited by conventional systems.

The composition of this book is as follows. Chapter 1, Motivation:

a. Introduces the problem of mission-critical Supercomputing systems which
can be resolved only with the use of dynamic architectures.

b. Finds desirable characteristics for dynamic architectures in mission-critical
applications.

c. Shows that dynamic architectures possess powerful capabilities for imple-
menting most useful architectural features for reconfigurable architectures
in mission-critical applications.

xvii
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Chapter 1, Reconfiguration Software, discusses the two categories of recon-
figuration software introduced above. It gives a comprehensive description of the’
reconfiguration methodology applicable for architectural and fault-tolerant recon-
figurations. General problems of these reconfigurations are presented in Sec. 1. For
the architectural reconfigurations introduced in Sec. 2, the following techniques are
introduced:

a. Multicomputer reconfigurations
b. Network reconfigurations

For fault-tolerant reconfiguration (Secs. S through 7), we discuss the formation
of gracefully degraded reconfigurable binary trees with the use of reconfigurations.

Chapter III introduces the software techniques leading to an automatic con-
struction of the reconfiguration flow chart for two types of systems; (a) dynamic
multicomputer systems (Secs. 3 and 5) and (b) dynamic networks organized as
reconfigurable binary trees (Sec. 4).

For dynamic multicomputer systems, the construction of a reconfiguration flow
chart leads toward the minimization of program delays and the total time of execut-
ing all programs from a given program mix. For reconfigurable binary trees, the
construction of such a flow chart leads to a significant data-exchange optimization,
because it is possible to select such tree configurations as consecutive states in this
flow chart in which each pair of nodes with large data exchanges can be connected
with the minimal communication path of length 1 (i.c.. these two nodes become
adjacent in a selected tree configuration).

Also, for dynamic multicomputer systems, we discuss two types of recon-
figuration flow charts: static, in Sec. 3, and dynamic, in Sec. 5. A static recon-
figuration flow chart takes into account the reconfiguration requests of those
programs called static that are available in the system before the beginning of the
procedures aimed at automatic construction of this flow chart.

A dynamic reconfiguration flow chart considers reconfiguration requests of
those programs called dynamic that arrive at the system when it is executing a
reconfiguration flow chart. Thus a dynamic reconfiguration low chart can be con-
ceived as a modified static flow chart with newly added architectural states créated
dynamically that take into account reconfiguration requests of dynamic programs.

The objectives of Chapter IV are:

1. To outline the effect of dynamic reconfiguration on some popular ADA
constructs

2. To give memory management techniques for data structures in relational
data bases that are created dynamically

Section 1 is dedicated to handling, in dynamic architectures, such well-known ADA
constructs as:

a. ADA packages (Sec. 1.1)
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b. Task rendezvous (Sec. 1.2)
¢. Exceptions handling (Sec. 1.3)

Section 2 introduces the topic of memory allocation in a relational data base imple-
mented as a dynamically reconfigurable multiprocessor system including content-
addressable memories. The description of such a relational data base is made in Sec.
2.2. Section 2.3 performs the classification of all allocation schemes. Section 2.4
addresses the problem of file interference and Secs. 2.5 and 2.6 devise optimal
allocations for various types of files introduced in Sec. 2.3.

Chapter V, Algorithm Development, discusses the organization of computa-
tions in dynamic architectures for the following classes of algorithms:

a. General-purpose program mix made of concurrent programs with no data
dependencies (Sec. 2.1)

b. Parallel construct fork—join (Sec. 2.2)
c¢. Producer—consumer algorithms (Sec. 3)

d. Array computations encountered in the solution of relaxation equations and
pulse deinterleaving algorithms (Sec. 4)

e. Data-base management in tree data bases (Sec. 5)
f. Real-time sorting (Sec. 6)
g. Tree-structured algorithms (Sec. 7)

Finally, following Chapter V we present the conclusions to this volume. Over-
all conclusions are divided into the following topical areas presented in respective
sections:

a. Conclusions on the reconfiguration. flow chart and reconfiguration meth-
odology

b. Conclusions on algorithm development

Svetlana P. Kartasl;ev
Steven 1. Kartashev
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