

ELEMENTS
OF THE THEORY
OF COMPUTATION

Harry R. Lewis
Harvard University

Christos H. Papadimitriou
Massachusetts Institute of Technology

|

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

PREFACE

This book is an introduction, on the undergraduate level, to the classi-
cal and contemporary theory of computation. The topics covered are, in a
few words, the theory of automata and formal languages, computability by
Turing machines and recursive functions, uncomputability, computational
complexity, and mathematical logic. The treatment is mathematical but the
viewpoint is that of computer science; thus the chapter on context-free
languages includes a discussion of parsing, and the chapters on logic establish
the soundness and completeness of resofution theorem-proving.

In the undergraduate curriculum, exposure to this subject tends to
come late, if at all, and collaterally with courses on the design and analysis
of algorithms. It is our view that computer science students should be exposed
to this material earlier—as sophomores or juniors—both because of the
deeper insights it yields on specific topics in computer science, and because
it serves to establish essential mathematical paradigms. But we have found
teaching a rigorous undergraduate course on the subject a difficult under-
taking because of the mathematical maturity assumed by the more advanced
textbooks. Our goal in writing this book has been to make the essentials of
the subject accessible to a broad undergraduate audience in a way that is
mathematically sound but presupposes no special mathematical experience.

The whole book represents about a year’s worth of coursework. We
have each taught a one-term course covering much of the material in Chap-
ters 1 through 6, omitting on various occasions and in various combinations
the sections on parsing, on recursive functions, and on particular unsolvable
decision problems. Other selections are also possible; for example, a course

xiii

xiv PREFACE

emphasizing computability and the foundations of mechanical logic might
skip quickly over Chapters 1 through 3 and concentrate on Chapters 4, 6, 8,
and 9. However it is used, our fervent hope is that the book will contribute
to the intellectual development of the next generation of computer scientists
by introducing them at an early stage of their education to crisp and method-
ical thinking about computational problems.

We take this opportunity to thank all from whom we have learned,
both teachers and students. Specific thanks go to Larry Denenberg and Aaron
Temin for their proofreading of early drafts, and to Michael Kahl and Oded
Shmueli for their assistance and advice as teaching assistants. In the spring of
1980 Albert Meyer taught a course at M.L.T. from a draft of this book, and
we thank him warmly for his criticisms and corrections. Of course, the blame
for any remaining errors rests with us alone. Renate D’Arcangelo typed and
illustrated the manuscript with her characteristic but extraordinary perfec-
tionism and rapidity.

CONTENTS

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

19

SETS, RELATIONS, AND LANGUAGES
“if-Then" and its Relatives 1

Sets b

Relations and Functions 8

Special Types of Binary Relations 12
Closures 18

Finite and Infinite Sets 21

Three Fundamental Proof Techniques 23
Alphabets and Languages 29

Finite Representation of Languages 33
Problems 39

References 47

vii

viii

Chapter 2
21
2.2
2.3

2.4

25
26

Chapter 3
31
32
33
34
35

3.6

CONTENTS

FINITE AUTOMATA 49
Deterministic Finite Automata 49
Nondeterministic Finite Automata 54

Equivalence of Deterministic and Nondeterministic
Finite Automata 59

Properties of the Languages Accepted by Finite
Automata 64

Finite Automata and Regular Expressions 69
Proofs that Languages Are and Are Not Regular 73
Problems 76

References 93

CONTEXT-FREE LANGUAGES 95
Context-Free Grammars 95

Regular Languages and Context-Free Languages 102
Pushdown Automata 105

Pushdown Automata and Context-Free Grammars 110
Properties of Context-Free Languages 119

3.5.1 Closure Properties 120
3.5.2 Periodicity Properties 122
3.56.3 Algorithmic Properties 131

Determinism and Parsing 134

3.6.1 Deterministic Pushdown Automata and Context-Free
Languages 135

3.6.2 Top-Down Parsing 138

3.6.3 Bottom-Up Parsing 146

Problems 153

References 164

CONTENTS ix

Chapter 4
4.1
4.2
43
44
45

4.6

Chapter 5
5.1
5.2
5.3
54
5.5
5.6
5.7

Chapter 6
6.1

6.2

TURING MACHINES 168
The Definition of a Turing Machine 168

Computing with Turing Machines 175

Combining Turing Machines 180

Some Examples of More Powerful Turing Machines 187
Extensions of the Turing Machine 192

Nondeterministic Turing Machines 204

Problems 211

References 221

CHURCH’'S THESIS 222
Church’s Thesis 222

Grammars 224

The Primitive Recursive Functions 232

Godelization 242

The u-Recursive Functions 248

Turing-Computability of the u-Recursive Functions 252
Universal Turing Machines 258

Problems 262

References 271

UNCOMPUTABILITY 272
The Halting Problem 272

Turing-Enumerability, Turing-Acceptability,
and Turing-Decidability 278

x CONTENTS

6.3 Unsolvable Problems About Turing Machines
and u-Recursive Functions 283

6.4 Unsolvable Problems About Grammars
and Similar Systems 286

6.4.1 Unsolvable Problems About Unrestricted
Grammars 286

6.4.2 Thue Systems 287

6.4.3 Post's Correspondence Problem 289

6.4.4 Unsolvable Problems About Context-Free
Grammars 293

6.5 An Unsolvable Tiling Problem 296
Problems 300

References 309

Chapter 7 COMPUTATIONAL COMPLEXITY 311
7.1 Time-Bounded Turing Machines 311
7.2 Rate of Growth of Functions 321
7.3 Time-Bounded Simulations 324
7.4 The Classes ® and %@ 327
7.5 9@-Completeness 339
7.6 Some NEP-Complete Problems 344
7.6.1 A Bounded Tiling Problem 345
7.6.2 Integer Programming 348
7.6.3 The Traveling Salesman Problem 350
7.7 The Complexity Hierarchy 356

Problems 359

References 369

CONTENTS xi

Chapter 8 THE PROPOSITIONAL CALCULUS 372

8.1 Introduction 372

8.2 Syntax of the Propositional Calculus 373

8.3 Truth-Assignments 377

8.4 Validity and Satisfiability 380

8.5 Equivalence and Normal Forms 383

8.6 Compactness 391

8.7 Resolution in the Propositional Calculus 393

Problems 400

Chapter 9 THE PREDICATE CALCULUS 408
9.1 The Predicate Calculus: Syntax 408
9.2 Structures and Satisfiability 413
9.3 Equivalence 418
9.4 The Expansion Theorem 422
9.5 Three Applications of the Expansion Theorem 432
9.6 Unsolvability and 91®-Completeness 435
9.7 Resolution in the Predicate Calculus 439
Problems 448

References (Chapters 8 and 9) 457

INDEX 459

CHAPTER 1

SETS,
RELATIONS,
AND LANGUAGES

1.1 “IF-THEN’® AND ITS RELATIVES

Mathematics deals with true and false statements and the relations
between statements. Of course, these statements are about objects of one kind
or another, and we shall shortly take up the subject matter of the particular
branch of mathematics we are studying. But first some remarks are in order
about mathematical statements in general.

In mathematics, we often use the English language in ways more precise
than those of everyday discourse. Some odd statements may result, but if all
the terminology is clearly understood and taken literally, each statement can
be seen, without ambiguity, to be either true or false. For example, Sentence
(1) should cause no controversy.

The word watermelon has more ¢’s than o’s. N
Neither should Sentence (2).
The word watermelon has at least as many e’s as o0’s. @)

This is patently true, although a bit peculiar in light of the previous state-
ment. It is hard to imagine why one would want to say (2) when one could
as easily say (1). That, however, does not affect the truthfuiness of (2). What
about the following sentence ?

The word watermelon has at least as many x’s as y’s. 3)

This is another true statement, since zero is at least as big as zero; never mind
that one would not ordinarily say such a thing.

2 Chapter 1 SETS, RELATIONS, AND LANGUAGES

The conjunctions and and or play an important and precise role in the
formation of statements. They combine two statements to make a third,
which is true or false depending on the truthfulness or falsity of the pieces.
In the case of and, the compound statement is true if both component state-
ments are true; otherwise the compound statement is false. For example,

the word watermelon has more ¢’s than o’s and

. 4
the word blueberry has two consecutive r’s @
is true since (1) and

the word blueberry has two consecutive r’s)

are both true. In the case of or, the compound statement is true if either
component statement is true. Thus

the word blueberry has two consécutive r’s or

the word peach is six letters long ©
is true because (5) is true, in spite of the fact that .
the word peach is six letters long N
is false. Also,
the word blueberry has two consecutive r’s or @)

the word watermelon has at least as many e’s as 0’s

is true; a combination of statements with the connective or is true if one or
the other or both of the combined statements is true and false only if both of
the statements being combined are false.

Another phrase commonly used as a conjunction is if . . . then. ... In
everyday discourse this phrase has overtones of explanation or causality.
Such concepts are alien to mathematics, however; we must have a clearer
criterion for the truth of an if-then statement. The rule could not be simpler:
an if-then statement is true if the first part is false or if the second part is true.
By way of shorthand, let us write p and ¢ for the two statements involved.
Then if p then q can be divided into two cases.

Case I. Statement p is true. Then in order for the compound state-
ment to be true, ¢ must be true as well.

Case 2. Statement p is false. Then the compound statement is auto-
matically true, regardless of whether g is true.
For example,

if the word watermelon has more e’s than o’s,
then the word blueberry has two consecutive r’s

is true, since Case | applies and q is true. The statement

if the word blueberry has two consecutive r’s,
then the word peach is six letters long

“If-Then” and Its Relatives 3

is false, since Case 1 applies and ¢ is false. Finally, any statement of the form
if the word peach is six letters long, then ¢

is true, regardless of whether g is true or false, since Case 2 applies. In all
situations, to show that if p then q is true, there is no need to look for a
“meaningful” connection between p and ¢; one merely verifies that they are
related by Case 1 or by Case 2.

Mathematics rarely deals with statements about particular objects, such
as the words watermelon and blueberry. Instead, it tends to deal with general
statements about classes of objects. To deal with such generalities, we intro-
duce symbols to stand for the objects being discussed, in the way we have
used p and g to stand for statements. For example, suppose x stands for any
word. Then the statement

if x has more ¢€’s than o’s, then x has at least one e)

is true. Arguing very carefully, we would break this statement into two cases.
If x does not have more e’s than o’s, then Case 2 applies and Statement (9)
is true. On the other hand, if x does have more ¢’s than o’s, then Case 1
applies, and to prove that (9) is true, we must show that x has at least one e.
Now x cannot have fewer than zero o’s, and since it has more e’s than o’s,
it must have at least as many e’s as the next number bigger than zero, that
is, at least one e. Thus (9) is true.

When the if part of an if-then statement can under no circumstances be
true, the compound statement is said to be true vacuously. For example, let
x be any word, /; and J, any letters, and », and n, any numbers, and consider
the statement

if x has n, I,’s, n, I,’s, and n, < n,,
then x has at least n, + n, letters in all.

(10

As before, we need consider only the case in which the if part is true. But
now we must deal with two subcases. If /, and /, are the same letter, then (10)
is vacuously true, since then x cannot have fewer /,’s than [,’s. If [, and /, are
different letters, then x has n, + n, letters which are either /,’s or /,’s, and
therefore at least n, -+ n, letters in all.

Let us go back to Cases 1 and 2 for the truth of an if-then statement.
Another way to interpret these cases is to state that if p then q is true if it is
impossible for p to be true and g to be false simultaneously. One can therefore
try to establish a sentence of the form if p then q by contradiction, that is, by
assuming q to be false and p to be true and showing that an inconsistency
results. We illustrate this principle by a numerical example. Suppose that x
is any number. We might argue as follows to show

if x* = 0, then x = 0.

4 Chapter 1 SETS, RELATIONS, AND LANGUAGES

Suppose that x> — 0, but x % 0. Then either x > 0 or x < 0. Butif x > 0,
then x2 > 0, and if x <~ 0, then x? > 0. In either case, x? >> 0. This contra-
dicts the assumption that x* = 0.

In writing mathematics, the phrase

ponly ifg
means exactly the same thing as
if p, then q.
Again, we use a numerical example. Let x and y be integers. Then
x + yis odd only if one of x, y is odd {an
means the same thing as
if x ++ y is odd, then one of x, y is odd
and is a true statement. On the other hand,
qifp
means exactly the same thing as
if p, then q.
Another way of rephrasing (11) is
x or yis odd if x 4+ y is odd.

Often p only if q (that is, if p then q) and p if g (that is, if q then p) are com-.
bined into

p if and only if q.
In order for this statement to be true, p and ¢ must either both be true or both
be false. To put it another way, p if and only if g means that p and ¢ are true
under exactly the same circumstances. To establish that an if-and-only-if

statement is true, we usually break it into its two parts and establish each
separately. For example, consider

x -+ y is odd if and only if exactly onet of x and y is odd.
This can be written in two parts.

(a) If exactly one of x and y is odd, then x + y is odd.

(b) If x -+ y is odd, then exactly one of x and y is odd.
To establish (a) we may simply write x and y as 2m and 2n 4 1 (not neces-
sarily in that order) and note that 2m + 2n -+ 1 is odd. To establish (b), it

is easiest to argue by contradiction; that is, to assume that x 4 y is odd but
either both or neither of x and y is odd. A contradiction follows immediately.

tExactly one means one, and not more than one.

Sets 5

The statement if g then p is called the converse of the statement if p
then g. Obviously, the converses of some true statements are true, and the
converses of other true statements are false. To argue p if and only if q, we
may first show if p then ¢, and then show conversely, as we shall say, if ¢
then p.

1.2 SETS

Mathematics deals with statements about objects. Objects of various
kinds have special properties of their own: numbers are even or odd, words
are made up of letters, and so on. But some general properties of objects and
collections of objects do not depend on what kinds of objects they are; these
properties depend only on objects being the same or different from each
other, and being grouped together in various ways. The ideas that objects
are parts of groups, and that those groups can combine and overlap, have
been found to be basic and powerful in many branches of mathematics.

A set is a collection of objects. For example, the collection of the four
letters a, b, ¢, and d is a set, which we may name L; we write L = {a, b, ¢, d}.
The objects comprising a set are called its elements or members. For example,
b-is an element of the set L; in symbols, b € L. Sometimes we simply say
that b is in L, or that L contains b. On the other hand, z is not an element of
L, and we write z ¢ L.

In a set we do not distinguish repetitions of the elements. Thus {red,
blue, red} is the same set as {red, blue}. Similarly, the order of the elements
is immaterial; for example, {3, 1, 9}, {9, 3, 1}, and {1, 3, 9} are the same sct.
To summarize: Two sets are equal (that is, the same) if and only if they have
the same elements.

The elements of a set need not be related in any way; for example,
{3, red, {d, blue}} is a set with three elements, one of which is itself a set. A
set may have only one element; it is then called a singleton. For example,
{1} is the set with | as its only element; thus {1} and 1 are quite different.
There is also a set with no element at all. Naturally, there can be only one
such set: it is called the empty set, and is denoted by &5. Any set other than
the empty set is said to be nonempty.

So far we have specified sets by simply listing all their elements, sepa-
rated by commas and included in braces. Some sets cannot be written in
this way, because they are infinite. For example, the set N of natural numbers
is infinite; we may suggest its elements by writing N = {0, 1, 2, .. .}, using
the three dots and your intuition in place of an infinitely long list. A set that
is not infinite is finite,t

TThis is an informal explanation, since a definition would be beyond the scope of
this book.

6 Chapter1 SETS, RELATIONS, AND LANGUAGES

Another way to specify a set is by referring to other sets and to prop-
erties that elements may or may not have. Thus if / == {1, 3, 9}and G = {3, 9},
G may be described as the set of elements of / that are greater than 2. We
write this fact as follows.

G = {x:x € Iand x is greater than 2}.

In general, if a set 4 has been defined and P is a property that elements of 4
may or may not have, then we can define a new set

B = {x:x € A4 and x has property P}.
As another example, the set of odd natural numbers is
O = {x:x € N and x is not divisible by 2}.

A set A is a subset of a set B—in symbols, A = B—if each element of
A is also an element of B. We also say that A is included in B. Thus O = N,
since each odd natural number is a natural number. Note that any set is a sub-
set of itself. If 4 is a subset of B but 4 is not the same as B, we say that A4 is
a proper subset of B and write 4 & B. Also note that the empty set is a subset
of every set. For if B is any set, then & < B vacuously, since each element of
@ (of which there are none) is also an element of B.

To prove that two sets 4 and B are equal, we may prove that A = B
and B < A. Every element of 4 must then be an element of B and vice versa,
so that A4 and B have the same elements and 4 = B.

Two sets can be combined to form a third by various set operations,
just as numbers are combined by arithmetic operations such as addition. One
set operation is union: the union of two sets is that set having as elements the
objects that are elements of at least one of the two given sets, and possibly
of both. We use the symbol U to denote union, so that

AUB={x:xe Aorx € B}.

For example,

{1,3,9)U (3,5, 7} = {1,3,5,7, 9}.
The intersection of two sets is the collection of all elements the two sets have
in common; that is,

ANB={x:x e Aand x € B}.
For example,

{1,3,9} " {3, 5,7} = {3}
and
onN=o0.

Finally, the difference of two sets 4 and B, denoted by 4 — B, is the set of
all elements of A4 that are not elements of B.
A—B—{x:xc Aand x ¢ B}
For example,
{1,3,9} — {3,5,7} = {1, 9}.

Sets 7

Certain properties of the set operations follow easily from their defini-
tions. For example, if 4, B, and C are sets, the following laws hold.

Idempotency AUA=A
ANA=A4
Commutativity AUB=BuUA
ANB=BNA
Associativity AUBUC=AUBUO
ANBNC=ANBNCOC)
Distributivity AUVUBNCO)=AUBNAUO)
ANBUC)=ANBUMANCDC)
Absorption ANAUB)=A4

AUuAnNB) =4
DeMorgan’s Laws A—BUO=UA—BN(A4-0C)
A—BNC)=A—Bu4—0)

Example 1.2.1
Let us prove the first of DeMorgan’s laws. Let

L=4—-(BU Q)
and
R=(4—-B)n (4 — 0);

we are to show that L = R. We do this by showing(a) L < Rand (b) R < L.

(a) Let x be any element of L; then x € A4, but x ¢ B and x ¢ C.
Hence x is an element of both 4 — B and 4 — C, and is thus an element of
R. Therefore L < R.

(b) Let x € R; then x is an element of both 4 — Band 4 — C, and
is therefore in 4 but in neither B nor C. Hence x € A but x ¢ B U C, so
x € L. Therefore R < L, and we have established that I, = R.

Two sets are disjoint if they have no element in common, that is, if
their intersection is empty.

It is possible to form intersections and unions of more than two sets.
If S is any collection of sets, we write |_J S for the set whose elements are the
elements of the sets in S. For example, if S = {{a, b}, {b, ¢}, {c, d}} then
US=1{ab,c,d};and if S = {{n}: n € N}, that is, the collection of all the
singleton sets with natural numbers as elements, then {_J S = N. In general,

US ={x:x € Pforsomeset P € S}.
Similarly,
(1S ={x:x € Pforeachset P € S}.

8 Chapter 1 SETS, RELATIONS, AND LANGUAGES

The collection of all subsets of a set A is itself a set, called the power
set of A and denoted by 24. For example, the subsets of {c, d} are {c, d} itself,
the singletons {¢} and {¢}, and the empty set &, so

208 = (o5 {e), {d}, {c, d}}.

A partition of a nonempty set 4 is a subset IT of 24 such that & is not
an element of IT and such that each element of A is in one and only one set
in T1. That is, TT is a partition of A4 if TT is a set of subsets of 4 such that

1. each element of 1 is nonempty;
2. distinct members of IT are disjoint;
3. Un =4

For example, {{a, b}, {c}, {d}} is a partition of {a, b, ¢, d}, but {{a, b, ¢}, {c, d}}
is not. The sets of even and odd natural numbers form a partition of N,

1.3 RELATIONS AND FUNCTIONS

Mathematics deals with statements about objects and the relations
between them. It is natural to say, for example, that “less than” is a relation
between objects of a certain kind—namely, numbers—which holds between
4 and 7 but not between 4 and itself. But the general idea of a relation is, at
this point, an intuitive and nonmathematical one; what exactly constitutes a
relation ? Standard mathematical procedure is to define relations in terms of
sets: a relation is a set of objects of a particular kind. The objects that belong
to relations are, in essence, the combinations of individuals for which that
relation holds in the intuitive sense. So the less-than relation is the set of all
pairs of numbers such that the first number is less than the second. Now there
is no mystery about less-than as an abstraction; it has been reduced to the
set of all its concrete instances.

But we have moved a bit quickly. In a pair that belongs to a relation,
we need to be able to distinguish the two parts of the pair, and we have not
explained how to do so. We cannot write these pairs as sets, since {4, 7} is
the same thing as {7, 4}. 1t is easiest to introduce a new device for grouping
objects called an ordered pair.t

We write the ordered pair of two objects @ and b as (a, b); a and b are
called the components of the ordered pair (a,). The ordered pair (a, b) is not
the same as the set {a, b}. First, the order matters: (a, b) is different from
(b, a), whereas {a, b} = {b, a}. Second, the two components of an ordered
pair need not be distinct; (7, 7) is a valid ordered pair. Note that two ordered
pairs (a, b) and (¢, d) are equal only when g = cand b = 4.

tTrue fundamentalists would see the ordered pair (a, b) not as a new kind of object,
but as identical to {q, {a, b}}.

