R. W. HAMMING

Numerical Methods
for Scientists
and Engineers

SECOND EDITION

McGRAW-HILL
BOOK COMPANY
New York

St. Louis

San Francisco
Diisseldorf
Johannesburg
Kuala Lumpur
London

Mexzxico

Montrea!l

New Delhi

Panama

Rio de Janeiro
Singapore

Sydney

Toronto

R. W. HAMMING
Bell Telephone Laboratories

Numerical Methods
for Scientists
and Engsicens

SECOND EDITION

-

This book was set in Times New Roman.

The editors were Jack L. Farnsworth and J. W. Maisel;

the designer was Barbara Ellwood;

and the production supervisor was Ted Agrillo.

The drawings were done by Eric G. Hieber.

The printer and binder was R. R. Donnelley & Sons Company.

Library of Congress Cataloging in Publication Data
Hamming, Richard Wesley, 1915-
Numerical methods for scientists and engineers.

(Series in pure & applied math)

Bibliography: p.

1. Electronic data-processing—Numerical analysis.
1. Title.
QA297.H28 1973 5194 72-12643
ISBN 0-07-025887-2

NUMERICAL METHODS
FOR SCIENTISTS
AND ENGINEERS

Copyright © 1962, 1973 by McGraw-Hill, Inc. All rights reserved.

Printed in the United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission of the publisher.

1234567890 DODO79876543

PREFACE

There has been much progress in the 10 years since the first edition was written,
but of the many books that have appeared on the topic none has put the emphasis
on the frequency approach and its use in the solution of problems. For these
reasons, a second edition seems necessary.

The material has been extensively rearranged, rewritten, and added to,
so that in some respects it is a new book; however, the main aims, style, and
motto have not changed.

As always, the author is greatly indebted to others for much that is in the
book. Mostimportant are his management and colleagues at the Bell Telephone
Laboratories. Professor Roger Pinkham has over the years been a constant
source of stimulation and inspiration. It would take a list of at least 100
names to thank all who have contributed to some extent, and at the top of this
list would be M. P. Epstein. My thanks also go to all the unmentioned people
on the list and to A. Ralson for many helpful suggestions. Thanks also to
Mrs. Jeannie Waddel for typing and helping to organize the manuscript.

R. W. HAMMING

*

*

VO NA AW~

10
*11
*12

13

Preface

Fundamentals and Algorithms

An Essay on Numerical Methods
Numbers

Function Evaluation

Real Zeros

Complex Zeros

Zeros of Polynomials

Linear Equations and Matrix Inversion
Random Numbers

The Difference Calculus
Roundoff

The Summation Calculus

Infinite Series

Difference Equations

* Starred sections may be omitted.

CONTENTS

ix

19
41
59
78
98
112
132
146
166
181
192
211

viii

11

14
15
16
17
18
*19
20
21
22
23
24
25
26
27
28
29
*30

111

31
32
33
34
35
*36
*37
*38

v

39
*40
*41

v

42
43

CONTENTS

Polynomial Approximation—Classical Theory

Polynomial Interpolation

Formulas Using Function Values

Error Terms

Formulas Using Derivatives

Formulas Using Differences

Formulas Using the Sample Points as Parameters
Composite Formulas

Indefinite Integrals—Feedback

Introduction to Differential Equations

A General Theory of Predictor-Corrector Methods

Special Methods of Integrating Ordinary Differential Equations

Least Squares: Theory

Orthogonal Functions

Least Squares: Practice

Chebyshev Approximation: Theory
Chebyshev Approximation: Practice
Rational Function Approximation

Fourier Approximation—Modern Theory

Fourier Séries: Periodic Functions

Convergence of Fourier Series

The Fast Fourier Transform

The Fourier Integral: Nonperiodic Functions

A Second Look at Polynomial Approximation—Filters
Integrals and Differential Equations

Design of Digital Fiiters

Quantization of Signals

Exponential Approximation

Sums of Exponentials
The Laplace Transform
Simulation and the Method of Zeros and Poles

Miscellaneous

Approximations to Singularities
Optimization

* Starred sections may be omitted.

227
243
258
277
296
317
339
357
379
393
412
427
444
459
470
483
495

503
527
539
548
562
575
592
603

617
628
640

649

657

CONTENTS iX

44 Linear Independence 677
45 Eigenvalues and Eigenvectors of Hermitian Matrices 686
N +1 The Art of Computing for Scientists and Engineers 702

Index 715

PART I

Fundamentals and
Algorithms

1

AN ESSAY ON NUMERICAL METHODS

1.1 THE FIVE MAIN IDEAS

Numerical methods use numbers to simulate mathematical processes, which in
turn usually simulate real-world situations. This implies that there is a purpose
behind the computing. To cite the motto of the book, The Purpese of Comput-
ing Is Insight, Not Numbers. This motto is often thought to mean that the
numbers from a computing machine should be read and used, but there is much
more tothemotto. Thechoice of the particular formula, or algorithm, influences
not only the computing but also how we are to understand the results when they
are obtained. The way the computing progresses, the number of iterations it re-
quires, or the spacing used by a formula, often sheds light on the problem. Fin-
ally, the same computation can be viewed as coming from different models, and
these different views often shed further light on the problem. Thus computing is,
or ai least should be, intimately bound up with both the source of the problem and
the use that is going to be made of the aiswers—it is not a step to be taken in isola-
tion from reality.

Much of the knowledge necessary to meet this goal comes from the field of
application and therefore lies outside a general treatment of numerical methods.
About all that can be done is to supply a rich assortment of methods and to

4 1 AN ESSAY ON NUMERICAL METHODS

comment on their relevance in general situations. This art of connecting the
specific problem with the computingisimportant, but it is best taught in connection
with a field of application.

The second main idea is a consequence of the first. If the purpose of com-
puting is insight, not numbers, as the motto states, then it is necessary to study
families and to relate one family to another when possible, and to avoid isolated
formulas and isolated algorithms. In this way a sensible choice can be made
among the alternate ways of doing the problem, and once the computation isdone,
alternate ways of viewing the results can be developed. Thus, hopefully, the in-
sight can arise. For these reasons we tend to concentrate on systematic methods
for finding formulas and avoid the isolated, cute result. It is somewhat more
difficult to systematize algorithms, but a unifying principle has been found.

This is perhaps the place to discuss some of the differences between numeri-
cal methods and numerical analysis (as judged by the corresponding textbooks).
Numerical analysis seems to be the study in depth of a few, somewhat arbitrarily
selected, topics and is carried out in a formal mathematical way devoid of relevance
to the real world. Numerical methods, on the other hand, try to meet the need
for methods to cope with the potentially infinite variety of problems that can
arise in practice. The methods given are generally chosen for their wide appli-
cability in creating formulas and algorithms as well as for the particular result being
found at that point.

The third major idea is roundoff error. This effect arises from the finite
nature of the computing machine which can only deal with finitely represented
numbers. But the machine is used to simulate the mathematician’s number sys-
tem which uses infinitely long representations. In the machine the fraction § be-
comes the terminated decimal 0.333...3 with the obvious roundoff effect. At
first this approximation does not seem to be very severe since usually a minimum
of eight decimal places are carried at every step, but the incredible number of
arithmetic operations that can occur in a problem lasting only a few seconds is the
reason that roundoff plays an important role. The greatest loss of significance in
the numbers occurs when two numbers of about the same size are subtracted so that
most of the leading digits cancel out, and unless care is taken in advance, this can
happen almost any place in a long computation.

‘Most books on computing stress the estimation of roundoff, especially the
bounding of roundoff, but we shall concentrate on the avoidance of roundoff. 1t
seems better to avoid roundoff than to estimate what did not have to occur if com-
mon sense and a few simple rules had been followed before the problem was put on
the machine.

The fourth mainideais again connected with the finite nature of the machine,
namely that many of the processes of mathematics, such as differentiation and in-

1.2 SECOND-LEVEL IDEAS §

tegration, imply the use of a limit which is an infinite process. The machine has
finite speed and can only do a finite number of operations in a finite length of time.
This effect gives rise to the truncation error of a process.

We shall generally first give an exact expression for the truncation error and
deduce from it various bounds. A moment’s thought should reveal that if we
had an exact expression, then it would be practically useless because to know the
exact error is to know the exact answer. However, the exact-error expression is
very useful in studying families of formulas, and it provides a starting point for a
variety of error bounds.

The fifth main idea is feedback, which means, as its name implies, that num-
bers produced at one stage are fed back into the computer to be processed again
and again; the program has a loop which uses the output of one cycle as the input
for the next cycle. This feedback situation is very common in computing, as it is
a very powerful tool for solving many problems.

Feedback leads immediately to the associated idea of stability of the feedback
loop—will a small error grow or decay through the successive iterations? The
answer may be given loosely in two equivalent ways: first, if the feedback of the
error is too strong and is in the direction to eliminate the error (technically, nega-
tive feedback), then the system will break into an oscillation that grows with time;
second and equivalently, if the feedback is delayed too long, the same thing will
happen. . -
A simple example that illustrates feedback instability is the common home
shower. Typically the shower begins with the water being too cold, and the user
turns up the hot water to get the temperature he wants. If the adjustment is too
strong (he turns the knob too far), he will soon find that the shower is too hot,
whereupon he rapidly turns back to cold and soon finds it is too cold. If the
reactions are too strong, or alternately the total system (pipes, valve, and human)
is too slow, there will result a ““ hunting * that grows more and more violent as time
goeson. Another familiar example is the beginning automobile driver who over-
reacts while steering and swings from side to side of the street. This same kind of
behavior can happen for the same reasons in feedback computing situations, and

therefore the stability of a feedback system needs to be studied before it is put on
the computer.

1.2 SECOND-LEVEL IDEAS

Below the main ideasin Sec. 1.1 are about 50 second-level ideas which are involved
in both theoretical and practical work. Some of these are now discussed.
At the foundation of all numerical computing are the actual numbers

6 1 AN ESSAY ON NUMERICAL METHODS

themselves. The floating-point number system used in most scientific and engi-
neering computations is significantly different from the mathematician’s usual
number system. The floating-point numbers are not equally spaced, and the
numbers do not occur with equal frequency. For example, it is well known that
a table of physical constants will have about 60 percent of the numbers with a
leading digit of 1, 2, or 3, and the other digits—4, 5, 6, 7, 8, and 9~—comprise only
40 percent.

Although this number system lies at the foundation of most of computing,
it is rarely investigated with any care. People tend to start computing, and only
after having frequent trouble do they begin to look at the system that is causing it.

Immediately above the number system is the apparently simple matter of
evaluating functions accurately. Again people tend to think that they know how
to doit, and it takes a lot of painful experience to teach them to examine the pro-
cesses they use before putting them on a computer.

These two mundane, pedestrian topics need to be examined with the care
they deserve before going on to more advanced matters; otherwise they will con-
tinually intrude in later developments.

Perhaps the simplest problem in computing is that of ﬁndmg the zeros of a
function. Inthe evaluation of a function near a zero there is almost exact can-
cellation of the positive and negative parts, and the two topics we just discussed,
roundoff of the numbers and function evaluation, are basic, since if we do not
compute the function accurately, there can be little meaning to the zeros we find.
Because of the discrete structure of the computer’s number system it is very unlikely
that there will be a number x which will make the function y = f(x) exactly zero.
Instead, we generally find a smallintervalin which the function changessign. The
size of the interval we can use is related to the size of the argument x, since for large
x the number system has a coarse spacing and for x small (in size) it has a fine
spacing. This is one of the reasons that the idea of the relative error

true — calculated
true

plays such a leading role in scientific and engineering computations. Classical
mathematics uses the absolute error

Relative error =

Absolute error = |true — calculated|
most of the time, and it requires a positive effort to unlearn the habits acquired in
the conventional mathematics courses. The relative error has trouble near places
where the true value is approximately zero, and in such cases it is customary to use
as the denominator

max{| x|, |f()]}

where f(x) is the function computed at x.

1.2 SECOND-LEVEL IDEAS 7

The provlem of finding the complex zeros of an analytic function occurs so
often in practice that it cannot be ignored in a course on numerical methods,
though it is almost never mentioned in numerical analysis. A simple method re-
sembling one used to find the real zeros is very effective in practice.

In the special case of finding all the zeros of a polynomial the fact that the
number of zeros (as well as other specialcharacteristics)is known in advance makes
the problem easierthan for the general analytic function. One ofthe best methods
for finding them is an adaptation of the usual Newton’s method for finding real
zeros, and this discussion is used to extend, as well as to analyse further, Newton’s
method. It is only in situations in which a careful analysis can be made that
Newton’s method is useful in practice; otherwise its well-known defects outweigh
its virtues.

What makes the problem of finding the zeros of a polynomial especially
important, besides its frequency, is the use made of the zeros found. The method
is a good example of the difference between the mathematical approach and the
engineering approach. The first merely tries to find some numbers which make
the function close to zero, while the second recognizes that a pair of ““ close zeros
will give rise to severe roundoff troubles when used at a later stage. In isolation
the problem of finding the zeros is not a realistic problem since the zeros are to
be used, not merely admired in a vacuum. Thus what is wanted in most practice
is the finding of the multiple zeros as multiple zeros, not as close, separate ones.
Similarly, zeros which are purely imaginary are to be preferred to ones with a small
real part and a large imaginary part, provided the difference can reasonably be at-
tributed to uncertainties in the underlying model.

Another standard algorithmic problem both in mathematics and in the use
of computation to solve problemsis the solution of simultaneous linéar equations.
Unfortunately much of what is commonly taught is usually not relevant to the
problem as it occurs in practice; nor is any completely satisfactory method of solu-
tion known at present. Because the solution of simultaneous linear equations is
so often a standard library package supplied by the computing center and because
the corresponding description is so often misleading, it is necessary to discuss the
limitations (and often the plain foolishness) of the method used by the package.
Thus it is necessary to examine carefully the obvious flaws and limitations, rather
than pretending they do not exist.

The various algorithms for finding zeros, solving simultaneous linear equa-
tions, and inverting matrices are the classic algorithms of numerical analysis.
Each is usually developed as a special trick, with no effort to show any underlying
principles. Theidea of an invariant algorithm provides one common idea linking,
or excluding, various methods. An invariant algorithm is one that in a very real -
sense attacks the problem rather than the particular representation supplied to the

8 1 AN ESSAY ON NUMERICAL METHODS

computer. The idea of an invariant algorithm is actually fairly simple and ob-
vious once understood. In many kinds of problems there are one or more classes
of transformations that will transform one representation of the equations into
another of the same form. For example, given a polynomial

PX)=a, X"+ a,_ X" '+ +a,=0

the transformation of multiplying the equation by any nonzero constant does not
really change the problem. Similarly, when a, # 0, replacing x by 1/x while also
multiplying the equation by x" merely reverses coefficients. These transforma-
tions form a group (provided we recognize the finite limitations of computing),
and it is natural to ask for algorithms that are invariant with respect to this group,
where invariant means that if the problem is transformed to some equivalent form,
then the algorithm uses, at all stages, the equivalent numbers (within roundoff, of
course). Ina sense the invariance is like dimensional analysis—the scaling of the
problem should scale the algorithm in exactly the same way. K is more than
dimensional analysis since, as in the example of the polynomial, some of the trans-
formations to be used in the problem may involve more than simple scaling.

It is surprising how many common algorithms do not satisfy this criterion.
The principle does more than merely reject some methods; it also, like dimensional

analysis, points the way to proper ones by indicating possible forms that might be
tried.

1.3 THE FINITE DIFFERENCE CALCULUS

After examining the simpler algorithms, it is necessary to develop more general
tools if we are to go further. The finite difference calculus provides both the
notation and the framework of ideas for many computations. The finite dif-
ference calculus is analogous to the usual infinitesimal calculus. There are the
difference calculus, the summation calculus, and difference equatiohs. Each has
slight variations from the corresponding infinitesimal calculus because instead of
going to the limit, the finite calculus stops at a fixed step size. . This reveals why
the finite calculus is relevant to many applications of computing: in a sense it un-.
does the limiting process of the usual calculus. It should be evident that if a limit
process cannot be undone, then there is a very real question as to the soundness of
the original derivation, because it is usually based on constructing a believable
finite approximation and then going to the limit.

The finite difference calculus provides a tool for estimating the roundoff
effects that appear in a table of numbers regardless of how the table was computed.
This tool is of broad and useful application because instead of caréfully studying

1.4 ON FINDING FORMULAS 9

each particular computation, we can apply this general method without regard to
the details of the computation. Of course, such a general method is not as power-
ful as special methods hand-tailored to the problem, but for much of computation
it saves both trouble and time.

The summation calculus provides a natural tool for approaching the very
common (and often neglected) problem of the summation of infinite series, which s
the simplest of the limiting processes (since the index n of the number of terms
taken runs through the integers only).

The solution of finite difference equations is analogous to the solution of
differential equations, especially the very common case of linear difference equa-
tions with constant coefficients, which is a valuable tool for the study of feedback
loops and their stability. Thus finite difference equations have both a practical
and a theoretical value in computing.

1.4 ON FINDING FORMULAS

Once past the easier algorithms and tools for doing simple things in computing,
it is natural to attack one of the central problems of numerical methods, namely,
the approximation of infinite operations (operators) by finite methods. Inter-
polation is the simplest case. In interpolation we are given some samples of the
function, say, y(—1), ¥(0), and (1), and we are asked to guess at the missing
values—to read between the lines of a table. While it is true that because of the
finite nature of the number system used there are only a finite number of values to
be found, nevertheless this number is so high that it might as well beinfinite. Thus
interpolation is an infinite operator to be approximated.

There is no sense to the question of interpolation unless some additional as-
sumptions are made. The classical assumption is that given n + 1 samples of the
function, these samples determine a unique polynomial of degree n, and this poly-
nomial is to be used to give the interpolated values. Withthe above data consist-
ing of three points, the quadratic through these points is

x(x—1)

Px)=——y(-D+ (1~ x3)y(0) +

x(x+ 1)
2

We are to use this polynomial P(x) as if it were the function. This method is
known as the exact matching of the function to the data.

The error of this interpolation can be expressed as the (# + 1)st derivative
(of the original function) evaluated at some generally unknown point 8 in the
interval. Unfortunately in practice it is rare to have any'idea of the size of this
derivative.

¥

10 1 AN ESSAY ON NUMERICAL METHODS

Forsamples of the function we may use not only function values y(x) but also
values of the derivatives y'(x), y"(x), etc., at various points. For example, the
cubic exactly matching the data y(0), y(1), ¥'(0), and y'(1) is

P(x) = (1 = 3x% + 2x°)3(0) + (3x% = 2x)yp(1) + (x — 2x* + x°)y'(0)
+ (3 = xy'()

It is importani to use analytically found derivatives when possible. Then we can
usually get a higher order of approximation at little extra cost since generally once
the function values are computed, the derivatives are relatively easy to compute.
No new radicals, logs, exponentials, etc., arise, and these are the time-consuming
parts of most function evaluation. Of course a sine goes into a cosine when
differentiated, but this is about the only new term needed for the higher derivatives.
Even the higher transcendental functions, like the Bessel functions, satisfy a
second-order linear differential equation, and once both the function and the first
derivative are found, the higher derivatives can be computed from the differential
equation and its derivatives (which are easy to compute). Thus we shall empha-
size the use of derivatives as well as function values for our samples.

Although a wide variety of function and derivative values may be used to
determine the interpolating polynomial, there are some sets, rather naturally oc-
curring, for which # + 1 data samples do not determine an nth-degree polynomial.
Perhaps the best example is the data y(—1), ¥(0), ¥(1), y"(—1), ¥"(0), and y"(1)
which do not determine a fifth-degree polynomial—the positions and accelera-
tions at three equally spaced points do not determine a quintic in general.

The classic method for finding formulas for other infinite operators, such
as integration and differentiation, is to use the interpolating polynomial as if it
were the function and then to apply the infinite operator to the polynomial. For
example, if we wish to find the integral of a function from —~1to +1, given the
values y(—1), »(0), and y(1), we find the interpolating quadratic as above and
integrate it to get the classical Simpson’s formula:

1

[, y@ dx = 1= + 0 + ()

This process is called analytic substitution; in place of the function we could
not handle we take some samples, exactly match a polynomial to the data, and
finally analytically operate on this polynomial. This is the classical method for
finding formulas. It is a two-step method: find the interpolating function and
then apply the operator to this function.

There is another direct method that is almost equivalent to the analytic-
substitution method. In this method we make the formula true for a seuence of

