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INTRODUCTION

This eighth conference in this series continues the tradition of presenting the
newest research results and developments in intelligent robots and computer
vision. Emphasis is given to new techniques and-algorithms.

More than 80 papers from ten countries were included in ten sessions that
address various new advances and new thrusts in this area. The papers in this
volume are arranged into topical sessions on specific approaches and problems in
machine vision. Session 1, on pattern recognition, included new algorithms for
occluded and distortion-invariant object identification, computer-vision pro-
gress on recognition by components, and a real-time laboratory system for
locating lines in 2 product to be inspected. Session 2, on image processing,
contained new advances in segmentation, edge detection, and feature extraction.
Session 3, on three-dimensional shape determination and representation, and
Session 4, on range image processing, provided new algorithms and resujts for
this formidable problem. Session 5, on neural networks, represented advanced
techniques for automating analyses of difficult computer-vision and robotic
problems. Session 7, on fuzzy logic, and Session 8, on image understanding and
analysis, addressed yet other techniques and new algorithms and results in this
area. New sessions were included on biologically motivated machine vision
systems (Session 6), time-sequential image processing of multiple frames of data

(Session 9), and polar exponential grid processing techniques and hardware for
in-plane distortion invariance (Session 10).

This conference ha§spawnedi\/ari6us other conferences on more specific topics
that should be of interest to many readers. These include

« Intelligent Robots and Computer Vision VIII: Systems and Applications
(SPIE Volume 1193),

+ Optics, lllumination, and Image Sensing for Machine Vision IV
(SPIE Volume 1194),

» ‘Mobile Robots IV (SPIE Volume 1195),
+ Intelligent Control and Adaptive Systems (SPIE Volume 1196),

 Automated Inspection and High Speed Vision Architectures III
(SPIF Volume 1197), and .

.*» Sensor Fusion II: Human and Machine Strategies (SPIE Volume 1198).
| I thank my secretary Marlene Layton, my cochair, the program committee, all
session chairs, and the authors who made this conference the success it was.

David P. Casasent :
Carnegie Mellon University
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Real;Time Optical Hough Transform

for Industrial Inspection

Jeffrey Richards and David Casasent
Carnegie Mellon University
Department of Electrical and Computer Engineering
Center for Excellence in Optical Data Processing
Pittsburgh, PA 15213

Abstract

We describe a real-time optical Hough transform (HT) inspection system and show guantitative inspeetlen
results using an industrial inspection application. The HT architecture uses an electromcally addressed hqexd
crystal television (LCTV) as the real-time spatial light modulator, a novel selective edge-enhancement !.’ilt.ermg
technique, and realizes multiple slices of the HT with a computer generated hologram. The industrial case
study of the inspection. of cigarette packages is used to benchmark the HT processor. A test set of 1('.)0 packages
is presented to the processor to qualify its effectiveness. The statistical significance of these finite test set

results is also examined:

1 Introduction

With the increasing industrial emphasis on quality control, inspection is quickly becoming an important
criterion in many factory processes. Typically, commercially available digital machine vision systems are used
for such inspections. Optical processing techniques have the potential to implement many of the same
inspection algorithms as digital systems with increased speed and accuracy, and at lower costs. An optical
processing vision system (based on Fourier transform (FT) wedge and ring features) has recently been
introduced as a commercial product.’?3 Qther general purpose optical inspection processors for industry based
on Fourier features have also been described.* Fourier features are often used in optical inspection applications
because optics can easily generate the Fourier features®. However, many applications cannot be solved with
Fourier features and more advanced algorithms and techniques are necessary.  We have extended optical
inspection techniques to include the Hough transform (HT) and show how the HT is used for inspection and can
be performed optically at high speed with an inexpensive architecture. We will illustrate our real-time HT
optical inspection processor on the industrial application of the inspection of cigarette packages.

Section 2 describes the optical architecture used in our optical HT inspection processor. Section 8 describes
the industrial inspection case study of cigarette package inspection which we will use to benchmark our

2HT Inspection Architecture

The computer generated hologram (CGH) has become increasingly popular in the past few );ears as a
versatile optical element®’. We have proposed® a new CGH which generates multiple slices of the HT in
N ’

2/ SPIE Vol. 1192 Inteltigent Robots and Computer Vision VIl Algorithms and Techniques (1989)



parallel. The HT is useful as a feature space in inspection applications since the significant information in
products being inspected is often straight lines' (which the HT transforms to peaks). In many inspection
appllcatlonzs,9 10 only several 4 slices of the straight line HT are necessary to complete the desired inspections.
Real-time digital implementations of the HT are too costly and slow to allow the HT to be used in industrial
inspection. There are many optical realizations of the HT which can implement the HT at high data rates
with, comparatively, inexpensive architectures. We have selected the HT CGH architecture for use in our
inspection processor for reasons we now note.

The HT CGH is an inexpensive and simple way to realize several sliées of the HT in parallel in real-time.

Its primary advantages are its simplicity (no moving parts as in other optical xmplementatlonsu 12, l3) low cost,
and that the CGH is easily replicated. With our HT CGH (a film mask with a binary pattern recorded on it),
multiple # slices of the HT are formed in parallel one focal length behind the CGH.

2.1 CGH HT

The Hough transform fh(p,0) we consider for an‘ input f(z,y) is the (p,d) or (normal, angle) HT

1p8)= [ [ 3.9)do—zcos 0-sin 0 dz dy, )

where p is the normal distance between a line and the origin, and # is the angle the normal makes with respect
to the x-axis. In our realization, @ ranges from 0° to 180° and p is bipolar. Our CGH implementation of this

HT does not use a direct mapping of input pixels to sinusoids in the HT plane as do other'*1® CGH
implementations. Instead, we encode many different orientations of pairs of orthogonal cylindrical lenses on
one CGH. One lens provides integration and the second lens in each pair provides imaging in the orthogonal
direction. Each encoded lens orientation realizes a different HT 4 slice corresponding to the orientation 8 of the
lens (i.e. fh(p,O) at a given 7). Hence, multiple 6 slices of the HT will be generated in parallel in.a polar format

at the output. Since the CGH is recorded with only binary data, it is also easily replicated.

Figure 1 shows the optical system used in the HT CGH configuratlon The image is scanned using a red-
green-blue (RGB) camera and fed to an LCTV at P (the entire LCTV assembly consists of an input polarizer,

or \/2 plate, to rotate the polarization of the laser &nd an output analyzer). Lens L, Fourier transforms (FTs)
the input and the spatial filter at P, passes only one FT order (the spatlal filter also provides edge
enhancement as described in Section 2.3, hence it is noted as an EE CGH). Lens L, inverse transforms the
spatially-filtered frequency plane back into a continuous spatial image at P The CGH HT is placed at P, and
the HT slices form one focal length behind it off-axis at P

Our CGH consists of different cylindrical lenses, i.e. complex transmittance functions exp{jnz’ /\} to
produce N slices of the HT at different 0, the CGH is the sum of N integrating cylindrical lenses rotated at
different angles @, (with respect to the z axns)

Z ea:p{—,-—(a:cos f+ysin 6 )2} (2)
. L ’

and the sum of N orthogonal imaging lenses
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Figure 1: Real-time optical CGH HT architecture

N .
Z ezp{;\%—(—-xsin 8, +ycos 0'.)2}, (3)
L2

i=1

with fL_2=0'5le .

We now discuss the CGH encoding scheme used. We desire high accuracy with diffraction efﬁ.ciency being
less important (since the output is not used as the input to another optical system). We also desire a modest
space bandwidth (to allow it to be easily printed) and binary encoding (to allow easy copying). As noted by
Allebach!®, the most accurate representation of a function on a CGH occurs when every grid point on the CGH
represents one sample point of the function {rather than allowing several grid points to represent the gray level
of one sample point). Thus higher input sampling rates are preferable for more accurate representations with
fewer samples. For these reasons, we choose a binary interferometric!’ CGH (in which the amplitude and phase
of a carrier are modulated). To record the general complex function a(z,y)e?®¥), the transmittance function is

t(z,y)=0.5+0.5a(z,y)cos [¢(z,y)+2mkzsin y], a ‘ (4)

where it is assumed that a(z,y) has been normalized to a maximum amplitude of 1, ¢ is the angle at which the
reconstruction is deflected from the axis (the last term defines the carrier spatial frequency (siny)/)\) and k =
(27/)) is the wave number.

To binarize (4), we use modulated (1-D) error diffusion!®. This provides the most accurate CGH with the
least space bandwidth product (SBWP). Error diffusion was originally suggested for improving the output of
digitally half-toned pictures.!? Similar techniques can be used when recording CGHs to attain high accuracy
with less space-bandwidth requirements. The principle of error diffusion is as follows. Since we are binarizing
a function, an error ¢(x,y) is associated with each (x,y) pixel recorded on the CGH. For example, if the
transmittance function ¢(z,y) is 0.8, we threshold to 1.0 and the error €(z,y) is -0.2. Instead of disregarding this
error, we propagate it to the neighboring pixels and we continue this procedure for all pixels. In the 1-D
modulated error diffusion technique we use, we propagate the error at each pixel to only one neighboring pixel
(1-D), however, the diffused error is modulated with a spatial carrier before it is propagated. This controls the
portion of the output where the error due to quantization is minimized.
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Our initial® CGHs were printed on a 300 dots per inch laser printer and photo-reduced onto a 15 x 15 mm?

piece of film. The CGHs described in this thesis were printed directly onto film with 2540 dots per inch (100
dots per mm) resolution with a Linotronix laser printer. The Linotronix prints 20 pm dots on 10 um centers
(oversized dots are printed since circular pixels are being used on a rectangular grid). We have developed a
CGH encoding technique to compensate for dot size effects, but this was not required for our present
application. The maximum size pattern that the Linotronix can print is 8.5% x 11*. Significant improvements
were realized because of the increased printer resolution and the elimination of the photo reduction stage.
We produced a 10 6 slicc CGH on a 15x15 mm? film with 1536x1536 recorder spots with fm—e'-2m and
'A\=488 nm. The output for a plane wave input is shown in Figure 2. Its optical efficiency was 1.4% (tlns can
be increased by bleaching and phase recording, but it was sufficient for our purposes). The spot sizes produced
were 65um (in agreement with the theoretical diffraction limit expected). We placed a single slit (line) in the
input and shifted it over the full 15mm aperture and determined that the uniformity of the output HT peak
varied by as little as 14% (10% of this is due to the uniformity of the input optical beam used). This 4%
variation in HT peak intensity with position of the input line is not of concern since the percentage error is
known and fixed at each location (and in our inspection application, the locations of the input lines are known).
The peak to sidelobe ratio (PSR) of the HT (the ratio of an HT peak value to the value between two HT slices)
is 65:1 and the overall SNR (the exact expected full 10 slice HT pattern divided by the sum of its errors at all
points in the HT plane) is 10. The HT CGH produced provides a 242x242 sample HT plane in 15x15 mm?
(15mm/65um=242). The size “a* of the CGH aperture (and the size of the HT plane with a 1:1 imaging

(CGH lens), its f; | and X are related to the number of HT samples m (in a distance "a") by a=(\ fum)o's.

Figure 2: Output of 10 slice HT CGH when illuminated with a plane wave

2.2 LCTV

A color Epson EIf LCTV was used. It has 240 pixels horizontally and 220 pixels vertically. Only the blue
“channel was used (as it gave the best contrast ratio? for the cigarette packages) and could be read out with the
blue \=488nm Argon laser light used: = With other lasers, the blue line'from the camera can be fed to a

. 20 P
different .channel on the LCTV and read out in another color of laser light. In one color, the LCTV gave
220x80 pfxel resolution.. We use the LCTV rotated 90° and hereafter refer to the 220 resolution as horizontal.
The spacings S, and s, between 11qu1d crystal pixels détermines the maximum verpig:al (l/25y=l.03 cy/mm) and

horizontal (1/2s =3.8 cy/mm) resolution and the spacing M /s between replicated FT orders (0.4mm vertical
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and 1.55mm horizontal). The full liquid crystal aperture (ax=28.6mm horizontally and ay=38.4mm verticAally)
determine the FT spot size (11x13 pm). The above distance calculations used f;, =795mm and A=488mm.

2.8 Edge Enhancement Spatial Filter
The CGH at P2 is opaque in the center, transmits light in a donut band pass region and at only certain
angular orientations of FT data. It performs edge enhancement by blocking the central 50 um at P2. This is

about 4 times the dc FT spot size. This blocks dc and low spatial frequencies below 0.13 cy/mm and thus
performs edge enhancement. The CGH also contains wedge shaped slits extending +5° on each side of each
HT angle 0 (this passes only input lines oriented within 5° of the desired angles #). The CGH also passes only
one FT order (the central order). This is achieved by making the P2 CGH opaque beyond a radius of 0.4mm.

This passes most of one FT order (spatial frequencies above 1.03 cy/mm are blocked, this results in blurred
horizontal lines in the input), but the full 220 horizontal resolution input sampling is still attained. We also
. adjust the polarization of the input light, the brightness control on the LCTV, and the angle of the LCTV
Snalyzer to achieve a remapping of the input video voltage signal to output light intensityzl. This produces the
desired white (transparent) edges on a dark background. This is not achieved by other liquid crystal phase
techniqueszz.' This intensity remapping further enhances our selective spatial filtering edge-enhancement.

3 Inspection Case Study

The case study used to evaluate our HT CGH inspection processor is the inspection of cigarette packages.
Although this is a specific application,»the general HT techniques we use can be applied to a range of inspection
applications. A representative cigarette package (labelled with the key features) is shown in Figure 3. The
closure stamp is labelled A, the tear tape B, and the lines {abelled @ and D are the diagonal lines (at 38° and
142°) which will be used to determine if the printing on the label is skewed. Specific defect inspection tasks
are to determine if the tear tape is present and properly. slighéd, if the closure stamp is present and straight
and does not extend down too far, if the label is skewed (rotated), and ‘if there are blemishes on the label.
Figure 4 shows examples of three o} e defects. Figure 4a is a blemished packige, Figure 4b contains a mis-
aligned stamp, and Figure 4c has a skewed label. We only require 3'(or‘ 4) slices of the HT (at 0°, 90°, and
38° or 142°) for this application. We used all four ¢ HT slices. - S

e

14 %

Pl:odu?tion lifle speeds malfdage thg the packages be in‘u;pécwd_‘g.téggeds of 700/minute (11.7/sec). Our
_real-time inspection processor is Jim| ln speed by the L(}m‘”ﬂhi@ﬂ;‘éperates at TV frame rates, so we can
conceptually perform 1800 inspections/minute. With the activdsmatéik LCTV used, and the possibility of 30

ms image decay rates, we can apﬁraggli" Bd; fram /gec rate
N VJ ‘ "y R '~_~ - ﬁ* . \ g Y ‘
¥ : &
The package is presented to the inspection processor with a horizontal and vertical positioning accuracy of
+ 0.5mm and a rotational accuracy of + 1°. The allowed skew tolerance for the package printing is 1.8° and
for the closure stamp is 3.2°. We now address how the required inspection is performed. Figure 5a shows the
HT of a generic package and Figure 5b shows the HT polar format. The 6=38°, 90° (horizontal lines), and -
0° (vertical lines) HT slices are shown in Figures 5¢ to e. The 38° slice has a peak denoting the presenc; and
!ocation of the diagonal line D. The presence of a peak and its location denotes that the package label is present
dnd properly aligned. The 0° slice has 4 peaks (the left and right edge of the package and the left and right
.edges of the gtamp). The latter two smaller peaks denote that the stamp is present and aligned and in the
proper location. The 90° slice has peaks (from right to left) corresponding to the top of the package, the to
and bottom of the tear strip, the bottom of the stamp, and the bottom of the package. These note the ,presencz
and location of the tear strip and the stamp. On the standard Marlboro package, the banner produces a peak
on the 0° slice and also provides information on the centering of the package label." ?

. f
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