Quantitative Decision Making

Guisseppi A. Forgionne

Quantitative Decision Making

Guisseppi A. Forgionne

Bucknell University

Wadsworth Publishing Company Belmont, California A Division of Wadsworth, Inc. Economics Editor: Stephanie Surfus
Editorial Assistant Holly Allen
Production Editor Sandra Craig
Print Buyer Ruth Cole
Cover and Interior Designer Andrew H Ogus
Cover Illustrator Philip Li
Copy Editor Janet Greenblatt
Technical Illustrator Art by Ayxa
Compositor Composition House Limited

The symbol used on the cover and part and chapter opening pages was adapted from Peter S. Stevens Handbook of Regular Patterns An Introduction to Symmetry in Two Dimensions, copyright 1981 by Peter S. Stevens, published by The MIT Press. Used by permission.

© 1986 by Wadsworth, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Wadsworth Publishing Company, Belmont, California 94002, a division of Wadsworth, Inc.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10---90 89 88 87 86

2-44E20-4E2-0 N82I

Library of Congress Cataloging in Publication Data

Forgionne, Guisseppi A., 1945—
Quantitative decision making.
Includes bibliographies and index.
1. Management science. I. Title.
HD30.23.F69 1986 658.4'03 85-13920

Quantitative Decision Making

To my mother, Mary, and to Jesus

此为试读,需要完整PDF请访问: www.ertongbook.com

Preface

This book gives an introductory survey of management science/operations research. The text provides complete coverage of today's major quantitative models and shows how they are applied to managerial problems in public and private organizations. Much effort has been spent in making each topic interesting and easy to read. The purpose is to provide the user with a sound conceptual understanding of the role of quantitative analysis in the decision-making process.

FOCUS The focus is on the practical and applied. The text explains how to formulate decision problems, how to solve them with an appropriate quantitative analysis, and how to apply the recommended solution. However, there is an emphasis on concepts rather than mechanical manipulation. Hence, a significant part of the discussion is devoted to problem formulation, technique assumptions, potentials, limitations, and interpretation of the results of the analysis from the perspective of the decision maker.

> There is a simplified, logical presentation of quantitative tools with extensive use of examples, graphs, tables, and other illustrative devices. Furthermore, each chapter has technique summaries incorporated at appropriate points within the discussion. In addition, the discussion highlights the connection between management science/operations research and computer information systems. Appropriate batch and interactive computer programs are identified. Computer data and models are presented, solution procedures are discussed, and the results are interpreted. There are also end-of-chapter glossaries for easy reference.

> Quantitative decision making, like athletics and music, is best learned by doing. Beginners can facilitate their understanding by practicing the concepts in the types of situations actually encountered by decision makers. Therefore, there is an abundance of realistic examples that are scaled-down versions of problems encountered in public and private

organizations. Each chapter contains several examples in the body of the text and numerous exercises and a case at the end.

End-of-chapter exercises are divided into thought exercises (extension of basic concepts), technique exercises (practice of procedures), and applications exercises (selection of concepts and techniques, and development of solution). Each chapter concludes with a modified version of an actual private- or public-sector case. Cases require an integration and extension of text concepts, quantitative analysis, formulation of a decision recommendation, and presentation of results in a form understandable to management.

Mathematics is kept at an accessible level for the beginning user of quantitative decision making. The only prerequisites are college algebra. elementary probability, and basic statistics. Other relevant mathematics is developed as needed. The orientation should put the material within reach of a junior, senior, or beginning MBA student.

ORGANIZATION The book is organized in a way that leads to a coherent treatment of the subject. First, major topics are divided into modules, or parts. Part I provides the foundations. It defines the nature of management science, discusses its role in the decision-making process, and identifies the steps necessary for successful implementation. The second part presents a general decision-making framework and shows how strategies can be formed in various decision environments. Part III addresses linear and other mathematical (integer, goal, heuristic, and nonlinear) programming problems and methods. The next part provides a comprehensive review of general network flow problems, including transportation, transshipment, assignment, minimal spanning trees, cycles and routes, maximal flows, and PERT/CPM. Part V considers some standard situations involving sequential decisions, queuing, and inventory problems. Simulation is the topic of the final module.

> Although each module after Part I is essentially independent, the modules are arranged in a logical progression. Part II deals mainly with decisions made in an uncertain or risky environment. The mathematical programming module, Part III, extends the analysis to constrained optimization problems that involve primarily certain circumstances. In Part IV, the mathematical programming concepts are applied to network flow problems. Part V considers some standard analytical models that build on the concepts developed in preceding modules. In many cases, available analytical models are of little value because of the complex or unstructured nature of the problem. The final module presents an approach designed for these situations.

> Each module, or part, is also designed to eliminate the effect of variability in student capabilities and motivation. Starting at the simplest

PREFACE xix

level, there is a gradual development of ideas and applications. Eventually, the student progresses to near the state of the art in the field. Similar independent modularity is provided within the chapters. Each chapter starts with elementary concepts, progresses through increasingly complex material, and ends with the most advanced topics.

With this arrangement, students can be assigned a continuous sequence of pages within a module. Then, when the level within the module exceeds the course objectives, students can be directed to another part of the book. In this way, the instructor can easily control the level for any particular topic. Furthermore, by directing the sequence of modules, the instructor can readily satisfy different course plans. These features provide the topical flexibility necessary for matching content with course objectives and student profiles.

The selection of topics reflects the introductory nature of the text. The book emphasizes the most popular quantitative approaches used today by public and private organizations. Unfortunately, some techniques, like nonlinear programming, require a preparatory background in management science/operations research. In these instances, the topic is merely identified and illustrated, and text notations and a bibliography refer the user to appropriate advanced treatments. However, the book provides the essential, relevant material covered in almost all one-semester/two-quarter introductory survey courses in quantitative decision making.

SUPPLEMENTARY The Instructor's Manual contains fully worked-out solutions, hints in MATERIAL selecting problems for student assignments, and a bank of potential examination problems complete with solutions. The hints include a brief description of the problems, an assessment of their level of difficulty, and the relationships between the concepts and problems. In addition, the Manual provides sample course outlines and chapter-by-chapter ideas for presenting the material.

ACKNOWLEDGMENTS I wish to thank the staff of Wadsworth Publishing Company for their helpful suggestions. In particular, Jon Thompson and Stephanie Surfus, my acquisition editors, did an excellent job. I also appreciated the work of the designer, Andrew H. Ogus, and the production editor, Sandra Craig. I would like to express my appreciation to my colleagues, students, and family, who have contributed greatly to the project. Also, I am indebted to the administration of California State Polytechnic University, Pomona, for their support, especially Gerry White and the rest of the staff of the School of Business Administration Steno Pool. Pamela Scroggs, a student assistant, deserves special commendation for her help in assembling the final draft of the manuscript. Finally, I'd like to thank the reviewers of the manuscript: Bruce Bowerman, Miami University of Ohio; Harrison S. Carter, Georgia Southern College; Lawrence Ettkin, University of Tennessee at Chattanooga; John A. Lawrence, California State University at Fullerton; Michael Middleton, University of San Francisco; Alan Neebe, University of North Carolina at Chapel Hill; Paul Rackow, Fordham University; Harold J. Schleef, University of Oregon; Michael Sklar, University of Georgia; Willbann Terpenning, University of Notre Dame; Frederick P. Williams, North Texas State University.

Guisseppi A. Forgionne

Contents

PREFACE xvii

PART I FOUNDATIONS 2

Chapter 1 introduction 4

EVOLUTION OF QUANTITATIVE DECISION MAKING 5

Origins 6

Early Development 7

Maturity 8

CHARACTERISTICS 9

Focus on Problems 9

Systems Approach 9

Scientific Method 10

Team Approach 11

Mathematics and Computers 11

APPLICATIONS 12

Summary 15

Thought Exercises 16

Glossary 15

Technique Exercises 17

References 16

Applications Exercises 18

CASE: The Cookbook Conspiracy 19

Chapter 2 The Management Science Process 20

QUANTITATIVE FORMULATION 21

Defining the Problem 23

Formulating a Quantitative Model 24

Types of Models 25

Mathematical Models 26

Gathering Relevant Quantitative Data 29

ANALYSIS AND SOLUTION 29

MIS Process 29

Preparing Summary Reports 30

Processing Inquiries 32

Solving the Quantitative Model 35

Decision Support Systems 37

IMPLEMENTATION 39

Barriers to Implementation 39

Implementation Strategies 39

Summary 41

Thought Exercises 44

Glossary 42

Technique Exercises 45

References 43

Applications Exercises 47

CASE: Jane Allen's Career Choice 49

PART II DECISION ANALYSIS 50

Chapter 3 Decision Theory 52

STRUCTURE OF THE PROBLEM 53

Elements 54

Decision Tables 56

DECISION CRITERIA 57

Types of Situations 57

Dominance 59

Decision Making Under Uncertainty 60

Decision Making Under Risk 68

Decision Making Under Certainty 73

SEQUENTIAL DECISIONS 74

Decision Trees 76

Finding the Solution 79

Applications 83

Summary 83

Thought Exercises 87

Glossary 84

Technique Exercises 92

References 86

Applications Exercises 99

CASE: The Healthy Food Store 101

Chapter 4 Bayesian Analysis 103

VALUE OF INFORMATION 105

Sensitivity of the Decision 106

Perfect Information 108

Expected Opportunity Loss 109

Measuring the Benefit of Additional Knowledge 112

UPDATING PROBABILITIES 112

Sample Data 113

Revised Probabilities 117

Tabular Approach 118

CONTENTS ix

DECISION MAKING WITH ADDITIONAL INFORMATION 119

Sequence of Decisions 120
Evaluating the Information 122
Developing a Strategy 126
Computer Analysis 127
Applications 131

Summary 131 Glossary 133 Thought Exercises 135
Technique Exercises 138

References 134

Applications Exercises 142

CASE: Municipal Transit Authority 145

Chapter 5 Utility and Game Theory 147

UTILITY ANALYSIS 148
Measuring Utility 149
Using Utility for Decision Making 153
Attitudes Toward Risk 154
Limitations 159

MULTIPLE CRITERIA 160
Priority Systems 162
Transformations 165
Multiattribute Utility Theory 166
Limitations 170
CONFLICT SITUATIONS 171

Characteristics 172
Dominance 174
Pessimistic Criterion 175
Mixed Strategy 178
Extensions 186

Summary 189 Thought Exercises 192
Glossary 190 Technique Exercises 196
References 191 Applications Exercises 203

CASE: Rural Vehicles, Inc. 209

PART III MATHEMATICAL PROGRAMMING 210

Chapter 6 Linear Programming 213

NATURE OF LINEAR PROGRAMMING 215
Formulating the Problem 215
Characteristics 218
Classes of Problems 221
GRAPHIC SOLUTION PROCEDURE 222
Feasible Solutions 224

Finding the Best Solution 230 Minimization Problems 237

DECISION CONSIDERATIONS 240

Redundant Restrictions 240 Unbounded Problems 242 Infeasible Problems 243 Ties for the Best Solution 246

Summary 248 Glossary 249

Thought Exercises 252 Technique Exercises 255

References 250

Applications Exercises 257

CASE: Aviation Unlimited 260

Chapter 7 Simplex Method 261

FUNDAMENTAL METHODOLOGY 262

Standard Form 264

Basic Feasible Solutions 267

Initial Basic Feasible Solution 268

Evaluating a Solution 269

Improving a Solution 270

Iteration Process 272

Finding the Optimal Solution 275

SIMPLEX TABLES 278

Initial Simplex Table 278

Second Simplex Table 285

Optimal Simplex Table 293

DECISION CONSIDERATIONS 294

Constraint Formats 294

Minimization Problems 305

Special Situations 309

Summary 315

Thought Exercises 318

Glossary 316

Technique Exercises 323

References 317

Applications Exercises 327

CASE: Lowe Chemical, Inc. 330

Chapter 8 Postoptimality Analysis 332

THE DUAL 334

Shadow Prices 335

Dual Linear Program 341

Minimization Problems 347

SENSITIVITY ANALYSIS 351

Objective Function 352

System Constraint Amount 360

CONTENTS xi

Exchange Coefficients 367

Other Postoptimality Analysis 369

COMPUTER ANALYSIS 369

User Input 370 Computer Output 372

Management Benefits 373

Summary 373

Thought Exercises 376

Glossary 374

Technique Exercises 382

References 375

Applications Exercises 387

CASE: The Tennis Shop 392

Chapter 9 Mathematical Programming Topics 393

LINEAR PROGRAMMING LIMITATIONS 394

Indivisibility 395

Multiple Objectives 397

Uncertainty 397

Nonlinear Relationships 399

Sequential Problems 404

Decision Situations 404

INTEGER PROGRAMMING 405

Rounding Fractional Solutions 406

Graphic Approach 409

Enumeration 412

Cutting Plane Method 412

Branch and Bound Method 416

Computer Analysis 421

Extensions 424

GOAL PROGRAMMING 426

Formulating the Problem 428

Graphic Solution 431

Computer Analysis 435

Extensions 437

Summary 439

Thought Exercises 443

Glossary 439

Technique Exercises 450

References 441

Applications Exercises 454

CASE: Federated Motors, Inc. 459

PART IV NETWORKS 460

Chapter 10 Distribution 462

TRANSPORTATION 463

Nature of the Problem 464

First Feasible Solution 468
Evaluating the Solution 476
Improving the Solution 484
Finding the Optimal Solution 487

DECISION CONSIDERATIONS 488
Unbalanced Supply and Demand 488

Prohibited Routes 492
Maximization 494
Degeneracy 497
Multiple Optima 500
Computer Analysis 502

Limitations 504

ASSIGNMENT 505
Nature of the Problem 508
Solving the Problem 508
Special Situations 515
Computer Analysis 520

Applications 522 Summary 523

Summary 523 Thought Exercises 526
Glossary 524 Technique Exercises 530
References 525 Applications Exercises 532

CASE: Oriental Carpets, Inc. 537

Chapter 11 Network Topics 538

LAYOUTS 539
Nature of the Problem 540
Finding the Optimal Design 541
Computer Analysis 544
Applications 546

ROUTES 546
Shortest Route Problem 547
Finding the Shortest Route 548
Computer Analysis 553
Applications 555
Traveling Salesperson Problem 556
Finding the Best Tour 558
Extensions 567

FLOWS 567

Maximal Flow Problem 567

Finding the Maximal Flow 568

Computer Analysis 572

Applications 575

Transfer Shipping 577

Optimal Distribution Pattern 579

CONTENTS

Summary 582

Thought Exercises 585

Glossary 583 References 584 Technique Exercises 592 Applications Exercises 596

CASE: General Parcel Service 600

Chapter 12 PERT/CPM 602

PERT 603

Project Network 605

Activity Times 606

Project Completion Date 610

Activity Schedule 613

Critical Activities 616

Project Duration Variability 617

Computer Analysis 620

CPM 624

Crashing Activity Times 625

Crashing Decision 626

Linear Programming 627

Computer Packages 629

PERT/COST 632

Planning and Scheduling Costs 633

Controlling Costs 636

Limitations 638

Summary 638

Thought Exercises 641

Glossary 639

Technique Exercises 643

References 640

Applications Exercises 649

CASE: Universal Research Corporation 654

PART V MANAGEMENT SCIENCE TOPICS 656

Chapter 13 Inventory 659

CONTINUOUS AND INDEPENDENT DEMAND 662

Economic Order Quantity 662

Order Timing and Frequency 667

DECISION CONSIDERATIONS 669

Quantity Discounts 669

Planned Shortages 673

Economic Production Quantity 676

Risk and Uncertainty 681

Safety Stocks 682

Optimal Service Level 687

Inventory Systems 689

NONCONTINUOUS AND DEPENDENT DEMAND 692

Single-Period Inventory 692 Incremental Analysis 694

Material Requirements Planning 697

Other Considerations 703

Summary 705

Thought Exercises 709

Glossary 706

Technique Exercises 711

References 707

Applications Exercises 715

CASE: Willington Hospital 719

Chapter 14 Queuing Theory 721

STRUCTURE OF A QUEUING SYSTEM 723

Source Population 723

Arrival Process 723

Queue Accommodations and Behavior 730

Selection Process 731

Service Process 732

Departure 736

BASIC QUEUING ANALYSIS 736

Assumptions 737

Performance Measures 738

Comparative Analysis 742

Cost Considerations 744

PRACTICAL EXTENSIONS 746

Finite Source Population 746

Limited Waiting Capacity 749

Multiple Servers 751

Other Models 755

Summary 757

Thought Exercises 760

Glossary 758

Technique Exercises 763

References 759

Applications Exercises 766

CASE: Sommerville Savings & Loan Association 769

Chapter 15 Sequential Problems 772

MARKOV SYSTEMS 773

Characteristics 774

Transition Pattern 776

MARKOV ANALYSIS 778

State Probabilities 778

Matrix Approach 780

Steady State 783

Computer Analysis 788