.0-~.<‘ W
R ..‘....
OO

WY
e
ALY
T LRSS Y)
..“......_...._._......,.._...:._...................a.

190
000 *

0 o0
OO0

0
A

¢
OO

L
et 10
.......‘........&..».“.M.k,.m.“ Rrrea ittty
ORS00

AROS0
NOO00T)

LD

e

COCOCRN

ey

UL

OO RAUANAY . QNARARA) oe's T RARRCONE LY ’ OAAANY
I, R LNl [2
() o X " . $a00%Y COGOAAAANYY YTV OO RN
A I AN
‘ J . seastony
..........:_::.: ..-24..........,..._...:.....:.~
0
......Z:._ e, il‘..‘....:—:. foeeet TN
) 3
e) PR g RN
A R esod M e AR SR
AR St AN HIH RO AT
ORI TT1T) SO LTI 1" ‘
QNS TR OO
T T O 200 o AT RDT 0
.\..;......... NN *oty 0 OO, 3 ! A

.....::::..

R
AT X0

RO AN

9 |
..,.:.__..::..&._.._......
amn e

0
A)
SOOI ORI

NN LI

000
.

XX
teay

S

........::::...
........:.:.::..........,.... iy o
AL Wit

.:........

W
)
0

o, "
OO Y

LO00ouO0asoao 1 AARCLD

OOy S5t ..—._.o .._

"o
L0000
L0000
UL AR Y
QUOULLE

WA IO
S AR AKX ALK

COOL L OOO00000ARe
-.-..-..-».......0.---

[0)
OIS .-.... e

vy
oo
"

M0y
:.:_:....“.“.... OO_..::.
S gt
oy X_._...........:... B
OO0 ot se0y e
._..:...‘......_....._.A......‘u..,.......,.... 111" N
ALY AT OO0 o0
s:.:: B_..........._.:..“........,....m...._.......A....................................
NYXY PO COOUOONN v _N_...._....._.................... " KU LTI 0
N oy vy
) n.......‘._...... DO T YT ..._._.:L.:..n....
Q000 AT TG00 T T OGRS
........._...... AN"
e I
:.:...:....._.!.. RN .._...:..

0000C
AROOUOO0

DN

DU J
LAY POODCIA

ELI RS es AL KRR

LUAAL AT AL NN veengy
......::: I ...”..:_:. e:::..............,._...._:....:... x
L0 UM Y RO OO AR
R ey Y XS :,.»N..... N:.___:.
SO 19 et g . e Yy Mo
.....::...... o 4
L

Artificial Intelligence Texts

Prolog Programming;:
A Tutorial Introduction

CARLTON McDONALD
Department of Computer Science
Coventry Polytechnic

MASOUD YAZDANI
Depariment of Computer Science
University of Exeter

OXFORD
BLACKWELL SCIENTIFIC PUBLICATIONS

LONDON EDINBURGH BOSTON
MELBOURNE PARIS BERLIN VIENNA

© C. McDonald and M. Yazdani 1990

Blackwell Scientific Publications

Editorial Offices:

Osney Mead, Oxford OX2 OEL

25 John Street, London WCIN 2BL

23 Ainslie Place, Edinburgh EH3 6AJ

.3 Cambridge Center, Suite 208

Cambridge, Massachusetts 02142, USA

54 University Street, Cariton
Victoria 3053, Australia

All rights reserved. No part of this
publication may be reproduced, stored in a
retrieval system, or transmitted, in any form
or by any means, electronic, mechanical,
photocopying, recording or otherwise
without the prior permission of the
copyright owner.

First published 1990

Printed and bound in Great Britain by
Billing & Sons, Worcester

DISTRIBUTORS

Marston Book Services Lid

PO Box 87

Oxford OX2 ODT

(Orders: Tel: 0865 791155
Fax: 0865 791927
Telex: 837515)

USA
Blackwell Scientific Publications, Inc.
3 Cambridge Center,
Cambridge, MA 02142
(Orders: Tel: (800) 759-6102)

Canada
Oxford University Press
70 Wynford Drive
Don Mills
Ontario M3C 1J9
(Orders: Tel: (416) 441-2941)

Australia
Blackwell Scientific Publications
(Australia) Pty Ltd
54 University Street
Carlton, Victoria 3053
(Orders: Tel: (03) 347-0300)

British Library

Cataloguing in Publication Data

McDonald, Carlton
Prolog programming: a tutorial
introduction — (Antificial intelligence texts)
1. Antificial intelligence. Application of
computer systems. Programming
languages; Prolog
I Title I Yazdani, Masoud III. Series
006.302855133

ISBN 0-632-01246-3

Library of Congress
Cataloging in Publication Data
McDonald, Carlton.
Prolog programming: a tutorial
introduction / Cariton McDonald,
Masoud Yazdani. .

p. cm. — (Artificial intelligence texts)
Includes bibliographical references.
ISBN 0-632-01246-3
1. Prolog (Computer program language)
L. Yazdani, Masoud IL Title. III. Series.

QA76.73.P76M43 1990
006.3—dc20 90-504

Preface

This book is an introduction to Prolog intended for those who
have not yet bought Prolog (either as a piece of software or as a
new way of looking at computer programming) but want to find
out how it works and also for those wondering whether they
should use Prolog in an application. It assumes no knowledge of
Prolog and very little knowledge of other computer languages.

We have deliberately tried to produce a short text. The
idea is to give you a good feel for the language and leave it to you .
to assess the potential of Prolog for meeting your requirements.
The book is divided into two parts. Part One explains the basic
concepts incorporated into almost all implementations of Prolog.
Part Two shows examples and areas in which Prolog shows
itself in the best light (with the exception of the chapter on
operators which is used to enable the meta-level expert system to
be developed). We wish you a short but hopefully enjoyable
read.

vii

Acknowledgements

This project is one of the results of a period of industrial
secondment which I spent at Expert Systems International Ltd.
(ESI). As with software products we have produced, this book
incorporates the work of the whole company. In particular, I am
grateful to Tony Dodd, Carlton McDonald and Jocelyn Paine
who helped me a great deal while I was with ESI.

‘ M.Y.

1 am extremely grateful to Masoud Yazdani who encouraged me
to contribute to this book, despite the fact that I was inundated
with many other things. The experience of co-authoring has
enabled me to commit to paper ideas that I may never have made
time to share. I would also like to thank the research teams at
Oxford Polytechnic and the Open University for being both
helpful and inspiring. Finally, I would like to thank my mother,
whose example of diligence and perseverance I have tried to
emulate,

C.M

viii

Introduction

Prolog is both a new programming language and a new way of
looking at programming. Most other programming languages,
such as BASIC and Pascal present the computer with the solution
to a problem in the form of a series of instructions to the machine
w0 be executed strictly in the order in which they are specified.

PROgramming in LOGic (PROLOG) should be declarative,
a program should simply be the statement of the problem. The
way the problem is solved and the sequences of instructions that
the computer must go through to solve it, are decided by the
system.

We use the word 'should’ because there is no way one
could stop people misusing Prolog and using it as if it was
Pascal, or any other programming language that they may be
- familiar with. If they do this, they lose the benefits which
declarative programming offers.

On the face of it, there is no reason why one would want to
use a programming language other than Prolog! It is easier to say
what we want done and leave it to the computer to do it for us.
‘Computers would then be humanity's corporate slaves !

The problem with Prolog, and any other mechanical slave,
is that unless one is absolutely clear as to what one wants, one is
going to get piles of rubbish. In many cases people find it easier
to show someone how a job is to be done and leave the slave to
imitate them. This is why most professional programmers (Kay,
1984) suffer a culture shock when they first use Prolog. They
have been brain washed into expecting to show the computer
what to do in a great deal of detail. With Prolog they see magic
things happening during the first half hour and then spend the
rest of their time undoing the power of Prolog in order to make it

b Introduction
similar to one of the programming languages they know and
love. On the other hand total novices spend a great deal longer
learning everything about Prolog and piggy backing on its power
for a long time to come. ‘

Prolog was born within the realm of Artificial Intelligence
(AI). Al is concerned with the design and the study of the
properties of intelligent systems. Human behaviour
(understanding language, perception, learning, reasoning and so
on) is something with which we associate intelligence. Al
involves manipulating symbolic representations instead of
number crunching. LISt Processing (LISP) is the oldest
- programming language for AL LISP is similar in its philosophy

to Pascal and other procedural languages, in as much as a
program is built out of a series of instructions on how to perform
a task.

Prolog originally became popular with Al researchers, as.

“they seemed to know more about what intelligent behaviour is
than how it is achieved. Prolog has therefore become a serious
competitor to LISP. However, it soon became clear that there are
many other problem areas in which we know more about the
what than the how.

The philosophy behind Prolog (i.e. both the logical and
declarative aspects) is for academics the real power. At present,
the commercial world looks at speed of performance as a major
criterion. The Prolog concept will come into its own with the use
of parallel architectures, as Prolog solves problems by searching
a knowledge base (or more correctly a database) the search will
be greatly improved if several processors are made to search
different parts of the database.

Prolog is an ideal prototyping language because of the
speed with which a system can be developed (partly because of
the interpretive nature of the language, other factors include the
declarative nature, the compactness and inherent modularity of
Prolog programs). Once the developer has satisfied the customer

Introduction xi
that the system is feasible, a conventional procedural language is
often used. Even though Prolog compilers do exist their use is
still not widespread outside of academia. ‘

A Prolog program consists of a collection of two types of
entity:

a) facts
and
b) rules.
This collection is known as the database. When the database
has been set up, it is then possible to ask if certain things are true,
given the facts and rules of the database.

Facts are statements that are known unconditionally to be
true, such as:
Socrates is a man.
Rules are conditional facts. Such as:

If someone is a man then he is mortal.

Assume that we have given Prolog this information and we are
happy with its correctness. We can then ask Prolog the question:

Is Socrates mertal ?
Prolog will answer
yes.

This yes is an indication that in the context of the given facts the
query is true. Suppose we now ask Prolog another question:

xii Introduction
Is Tony mortal?

Prolog will answer
no.

Prolog is only able to answer yes or no. In this case, it lacks
certain information on Tony and so is unable to prove that Tony
is mortal. As far as Prolog is concerned, this is untrue.

In Prolog, no should be interpreted as meaning; ‘Given the
information I have, I am unable to prove this to be true'.

Given, this simple way of writing a program and a set of
basic primitive facilities, which the user could incorporate into his
program, Prolog can be used for a diversity of applications.

Obviously, the application needs to lend itself to Prolog's -
strengths. If we wish to do a great deal of calculation in order to
get an answer (say in calculating income from stock market
shares) then we would use a more 'traditional’ language. If
however, we wish to deal with less tangible, problem solving
issues (such as forecasting share price fluctuations) then we
might use Prolog.

Contents

Preface
Acknowiedgements

Introduction

Part One: Prolog Programming

1 A Simple Model for Prolog Execution
Terms

Input and Output

Lists

Built in Predicates

Arithmetic

Recursion

W N A s W N

Efficient Prolog Programming

Part Two: Projects

9 Prolog as a Production System
10 An Expert System
11 Operators
i2 A Meta-levei Expert System
i3 How to Cross a River Without Getting Wet
14 Searching
15 Natural Language Parsing

Glossary
Solutions

Bibliography
Index

vii

viii

25
35
41
45
62
69
83

89

91
100
105
117
129
143
174

193
202
206
207

Part One;:

Prolog Programming

CHAPTER 1

A Simple Model for
Prolog Execution

This chapter seeks to introduce the way in which Prolog
programs are executed. The philosophy behind the graphical
approach is that the esoteric parts of Prolog may be easier to
understand if one is able to visualise what is happening. It also
means that a graphical debugger could be developed in order to
facilitate the development of Prolog programs. There already
exists a graphical debugger produced at the Open University by
Mike Brayshaw and Marc Eisenstadt, their product is called the
Transparent Prolog Machine (TPM). They use a different
representation to the one used here, but they have found that a
graphical representation enables Prolog systems to be understood
and developed a lot easier than conventional textual approaches.

Before you try the examples and exercises you will need to
know how to get information into the database. The database
will be all the things that the system knows. The easiest way to
tell the system something is by typing:

2~ consult(user).
Most systems allow you to shorten this by typing:
?- [user].
Any information which you now type in will go straight into the

database. The termination of the eniering of information
(consultation) into the database is machine dependent, but is often

4 Chapter 1 ,

the end of file key sequence for the machine (control-D for Unix
systems, control-Z for IBM etc.). Unfortunately the information
in the database will be lost when you exit Prolog unless you save
itto afile. This will be covered later. The other alternative at this
stage is to type the information into a file and consult the file
“"Ttather than the user. For example suppose we had a file called
‘cars’ then '

?- [carsv].

would load the information in the file 'cars’ into the database.
The system uses the information to create a problem
representation. The system solves all problems by traversing this
representation of the Prolog database of facts and rules in order to
determine the validity of any queries you make. All Prolog
programs are expressed as facts and rules. With the exception of
input (reading) and output (writing) the system does nothing |
except answer queries.

Facts and questions

The Prolog interpreter answers questions, but you must provide
it with enough information to answer the question. For example
you can ask the system if it knows about some fact. For
example, suppose you told the system three facts (representin g
three animals cat, rat and bat). The Prolog representation is
simply:

cat.
rat.

bat.

These three facts are represented as three boxes in Figure 1.1. If

A Simple Model for Prolog Execution S
we want to ask the system if it knows about a rat we type:

?’ l'at.
The system then looks among the boxes to see if rat is among
them. If it finds it, it responds 'yes' otherwise it responds 'no’.

In this case searching for rat it responds:

yes.

rat

RN R RN RRRRRRINRNRR R RRR RN

Fig. 1.1 Representation of three simple facts

The system does not know that the facts are animals and therefore
cannot answer questions about the size or number of legs that the
animals have. All it knows is that rat, cat and bat exist in its
memory.

Rules

Sometimes it may not be possible to give the system everything

6 Chapter 1 _
in terms of facts. The system can look for other facts in order to

determine whether or not a query is true. You can specify rules
for the system to follow, for example if looking for the box (the
fact) a, and the box is not found, then if you can find boxes b, c,
and d then fact a is true. To inform the system of this rule we
write in Prolog:

a:-b,c d

and the facts:

e N o

o

ISSARINIERNRERINASRRRNI]
JARIRIIAN

b c d
a
=
H b
z
H
[+
-
=
- d

Fig. 1.2 A rule and four facts

In the rule 'a' is termed the head goal and the goals b, c, and d
are termed the fail goals. This single rule and the list of facts are

) A Simple Model for Prolog Exccution 7
represented by the system diagrammatically in Figure 1.2.

The system likes climbing down stairs whenever it can,
sometimes doing more work than is necessary. It needs a little
tempering, so in order to stop it going off on a wild goose chase,
care should be taken to give it facts before rules, as in Figure 1.3
instead-of the ordering in Figure 1.4.

a.
a:-b,c d

f4

AR LIsNT

Fig. 1.3 Fact before rule.

Fig. 1.4 Rule before fact

