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EDITOR’S FOREWORD

The present volume on Methods and Applications of Nonlinear Dynamics arose
mainly from lectures given at the First International Course on Nonlinear Dynamics,
which took place in Medellin, Colombia, on 1-5 September 1986. The aims of the
Course were to discuss some of the fundamental theoretical ideas of modern nonlinear
dynamics and their application to selected areas of physics, and also to help the parti-
cipants to bridge the gap between textbook presentations and the contemporary
research literature. The lectures were intended for and delivered to a Ph.D.-level
audience composed of physicists and mathematicians. They were not primarily
intended for experts, but rather for scientists interested in performing experimental or
theoretical research on nonlinear dynamical phenomena occurring in real physical sys-
tems.

The volume opens with the survey lectures of Prof. A. F. Rafiada (Universidad
Complutense, Madrid) on the ‘‘Phenomenology of Chaotic Motion’’. ‘They constitute
a very readable introduction to chaotic dynamics and emphasize its physical aspects.
The next contribution to the volume are the lectures of Prof. G. Turchetti (University
of Bologna) on *‘Perturbative Methods for Hamiltonian Maps’’, which survey classi-
cal and recent contributions to this topic. In view of the importance of Hamiltonian
dynamical systems in celestial mechanics, plasma physics, and many other areas, as
well as the central importance of the contributions of contemporary Italian dynamicists
to this wide subject, the inclusion of these lectures is more than justified. Prof. L.
Vizquez (Universidad Complutense, Madrid) emphasizes the physical, intuitive
aspects of nonlinear stochastic systems in his lectures on ‘‘An Elementary Introduction
to Stochastic Processes’’, the next major topic discussed in the volume. The latter
concludes with two survey articles by Prof. N. B. Abraham (Bryn Mawr College) and
Prof. A. Zettl (University of California at Berkely) on ‘‘Chaos in Optical Systems’’
and ‘“‘Chaos in Solid State Systems™, respectively. These are two extremely active
and fruitful areas of experimental and theoretical research in nonlinear dynamics in
which there is active interest in Colombia and other Latin Americal countries.

Space limitations prevented the inclusion of survey articles on such important
topics as chaos in fluid systems, although some salient phenomena in the latter domain
are considered in Prof. Rafiada’s contribution to this volume.

I wish to express my deep appreciation to Profs. Rahada, Turchetti, Vizquez,
and Zett! for generously contributing their time and expertise to the Medellin Course
and to this book, as well as to Prof. Abraham (who for reasons beyond his controt
was unable to be in Medellin) for his contribution to the volume. The idea of the
Course originated in conversations with Dr. S. M. Moore, whom I thank for many
heipful suggestions. It was sponsored by the Asociacién Pro-Centro Internacional de
Fisica (ACIF) of Bogotd, Colombia, and Dr. E. Posada F. and Prof. G. Violini, the
President and Exccutive Secretary, respectively, of ACIF, deserve thanks for their
strong support of the meeting. My lifelong friend, Dr. Alberto Vdsquez R., who was
then governor of the Department of Antioquia, provided generous financial support.
The Course was also sponsored by the Organization of American States. The
National Organizing Committee was composed of Profs. E. Alvarez, J. Mahecha, and
F. Medina (University of Antioquia), and Prof. R. Castafieda (National University of
Colombia), to whom sincere thanks are due for their many efforts. Last but not least,
I am grateful to Miss S. E. Dixon and Mrs. S M. Montgomery of the Naval
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Research labofatory for the care with which they typed the relevant editorial changes
to create a camera-ready manuscript, and to Mrs, H. S. Oxley of NRL for her valu-
able help with bibliographical matters.

It goes without saying that it is hoped that this volume will be useful to Latin
American scientists and students, as well as those in the United States, Europe, and
elsewhere interested in nonlinear physics.

A. W, Sdenz

Naval Research Laboratory
Washington, DC 20375
and

Physics Department
Catholic University
Washington, DC 20064



vii
CONTENTS
'{.

Editor’s Foreword .. ... ... . ... ... . .. . . e, v
Phenomenology of Chaotic Motion .

A . F. Ranada .. ........ .. . . . .. .. e 1
Perturbative Methods for Hamiltonian Maps

G. Turcherti .. . ... .. e e 95
An Elementary Introduction to Stochastic Processes

L Vdzquez .. ... ... . .. . . . .. e 155
Chaos in Solid State Systems

A Zettl ., 203
Nonlinear Dynamics and Chaos in Optical Systems

N.B. Abraham . . . ... ... . ..., 257



PHENOMENOLOGY OF CHAOTIC MOTION

ANTONIO F. RASADA
Departamento de Fisica Teérica
Universidad Complutense
28040 Xadrid, Spain

CONTBNTS

1. CHARACTERIZATION OF CHAOQTIC MOTION

1.1 Introduction

1.2 Chaos is ubiquitous

1.3 Several questions about chaos

1.4 The signs of chaos: The aspect of the signal, the power
spectrun, the correlation function, the Poincaré map, the
Liapunov exponents, the Kolmogorov entropy

2. STRANGE ATTRACTORS

2.1 Fractals

2.2 Definition of strange attractor: The Hénon map and the Lorenz
model

2.3 Hopf bifurcations

2.4 The Landau route to turbulence and the Ruelle-Takens route to
chaos

2.5 Experimental evidence of the Ruelle-Takens route

3. THE SUBHARNONIC CASCADE

3.1 Introduction

3.2 The period doubling phenomenon

3.3 The logistic map

3.4 Supercycles, doubling transformation and universality of
the Feigenbaum route

3.5 Experimental evidence of the Feigenbaum route

4. INTERMITTENCIES

4.1 Description of the phenomenon

4.2 Theory of type I intermittency

4.3 Theory of type III intermittency

4.4 Type II intermittencies

4.5 Experimental observatioh of intermittencies.



2

CHAPTER 1 CHARACTERIZATION
OF CHAOTIC MOTION

1.1 INTRODUCTION.

The realization that nature is much more caomplex and its behavior
far richer than what was thought is one of the most appealing leesons of
recent physics, since because of our apparent ability to predict “with
great precision the evolution of physical systems, cur image of the world
had become too simple, poor, and even cold. Vith the growing awareness
that traditional physice gives only a first K approximation to an
essentially nonlinear waorld, a new perspective is emerging which
approaches such seemingly unrelated problems as hydrodynamical
‘turbulence, chemical kinetics, or celeetial mechanics from the same point
of view. In fact, it ie found every day that systems which are described
by very different models have many common traits and mathematical
similarities which allow a unified treatment, To such an extent that it is
possible to spesk of universal patterns in the bebaviour of nonlinear
systens.

The most notewortby rupture with traditional thought is the
understanding that it is impoesible, as a matter of principle, to predict
precisely the long time behaviour of nmany systems because of the
extreme instability of the solutions of their aquations of motion. This
was already known to Poincaré '), who had studied this problem in his
“Néthodes nouvelles de la' mécanique céleste™. But physics took the proai-
sing road of quantum theory and this question was forgotten, in mpite of
sone warnings by Binstein. 2) Many years later, in 1954, it came again to
3)ﬂ:m'.odwmn:mnt:mk:wmxast:lmnlth.m'ml
(after his initial and those of Arnold4) and Moser 3) who completed the
proof), which characterizes the way in which instabtlity arises when an
integrable, and therefore regular, Hamiltonian is perturbed. In spite of
its great importance, it applies only to Hamiltonian systeme and not to

light when Kolmogorov



the more abundant dissipative ones. The next development happened in
1963, when the meteorolagist E.N. Lorenz found completely chaotic
trajectories in a very simple dissipative system of three coupled
ordinary differential equations. The great relevance of his result was not
recognized until a decade later, but it is widely appreciated today and is
often used as a paradigmatic example.

Such  complex behavior is neither due to external noise, nor to a
great number of degrees of freedom, nor to quantum effects., It just
happens that trajectories, which in a certain moment are very closa,
separate exponentially in time and intermingle with others in an erratic
and violent way. To designate this ‘phenomenon, Lorenz coined the
expresion "butterfly effect”, thus alluding to the sudden change in the
initial conditions of the atmosphere because of the unexpected beating of
the wings of a butterfly.

For classical physics all systems were, 1in principle,
predictable,this idea being at the conceptual basis of mechanicism, which
bad such great importance in modern thought. But in the 19th century the
study of systems with many degreas of freedom forced the beginning of a
new probabilistic tradition, as their detailed study was thought to be
impossible because of practical reasons. These two traditions were
thought to be complementary, rather than opposite, the general attitude
being the following: if a system has few degrees of freedom, use the
techniques of HNewtonian dynamics; if many, those of the new statistical
mechanics. For this point of view, complex behaviour appears only when
there are simultaneously many simple elements, so that systems with few
coordinates must behave simply.

However, and to the surprise of most, even systems with only two
degrees of freedom exhibit the butterfly effect or, in other words, their
time evolution is turbulent and chaotic. This is called deterministic
chaos, since the governing equations are deterministic but have solutions
exhibiting stochastic properties. This discovery is causing a very deep
change in our idaas on motion and, according to many, is bringing about a
conceptual revolution which can be compared to those of relativity or
quantum theory. MNaxwell, one of the founding fathers of statistical
mechanics, glimpsed it, whan he wrote (quated by {Berry, 1978))(curly
brackets denote general references):

E
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*If, therefore, those cultivators of the physical sciepces. . . . . are led
in pursuit of the arcana of sclence to the study of the singularities and
instabilities, rather than the continuities and stabilities of things, the
promotion of natural knowledge may tend to remove that prejudice in favor
of determinism which seems to arise from assuming that the physical
sclence of the future is a mere magnified image of that of the past*.

In the case of Hamiltonian systems, it is possible to characterize
in a simple way those which are regular, that is, nonchaotic. These are
the integrable systems, so called because their equations of motion can
be reduced to quadratures. Systems in this class have as many independent
constants of the motion with vanishing Poisson brackets as they have
degrees of freedom. On the other hand, those for which thie is not the
case, as happens in the famous three body problen. are called non-
integrable and they exhibit chaotic behavior.

In these lectures we will not deal with such systems, but with the
more abundant nonconservative ones, which have a richer and more diverse
behavior. There is, in particular, a very important difference concerning
stability. Conservative systems, contrary to dissipative onee, cannot have
asymptotically stable solutions; however,this kind of stability 1is
essential to many of the natural world etructures, as this occurs in the

important case of living beings.

1.2 CHAOS IS UBIQUITOUS

Since Lorenz's paper the list of systems in which chaos has been shown
to exist, either experimentally or by the numerical solution of the
equations of motion, grows at an accelerated pace. Ve can mention the

following:

Hamiltonian systems

Celestial mechanics (e.g., the three-body problem)
Fluids

- Lasers



- Nonlinear optical systems
- Solid state

- Particle accelerators

- Plasmas

- Chemical reactions

- Population dynamics

- Biological systems (e.g. the heart cell, the brain cell)
Let us consider some examples.

(1) The Farced Pendulum

The pendulum is frequently presented in elementary textbooks as one
of the simplest physical systems. However, it shows chaotic behaviou if
it is damped and is sumbmitted to a periodic force. ’’8) This example has
great interest, because the equation of motion is the same as that of a

Josephson junction submitted to microwave radiation:

o+ + b+ w? sing = a.n
¢+ o+ wg sing = T cos wdt,
where ¢ is proportional to the potential difference, 7 is the damping
tine, o a is the natural frequency and u)d that of the microwave. For some

values of T and we there are chaotic solutions (see Fig. 1.1).

(b) The Sitnikov Case af the Three-Body Problem

That the three-body system is chactic is shown very clearly in the
particular case first studied by Sitnikov®’'®) (see also (Berry,1978)). As
is seen in figure 1.2, two equal primaries of mass N follow elliptic
orbits of excentricity e, around their center of mass G in the plane x. A
planetoid of negligible mass moves in their gravitatory field, along the

straight line orthogonal to x at G.The equation of motion is

z
Z = - . a.2>
{22 +% (1 - cos 2?:)2}3/2

If the orbits are circular, e=0 and the system is integrable, the
motion being periodic and consisting in a nonlinear oscillation around G.
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If not, the motion is aperiodic and chaotic. If tk are the values of time
when the planetoid passes through the plane x, we can define the
“periods” as m =t, ., -t, . It can be shown then that there existe a
function S(e€), such that S(e)+ if €40, with the property that for any
random sequence ak >S(e),there is an initial conditiom (z(0), z(0) such
that T =ak ; in other words there are infinite sets of solutions which
can be characterized by random sequences of numbers. And this is8 so, in
spite c';f ithe apparent simplicity of the system, which bas only one degrée
of freedom.

m—0
ko
2 (1
/\
/1 \
i \
! \
M
Y™
PERIODIC FemoDIC M
™
% Y3 1
]
v,
Figure 1.1. The forced pendulum Figure 1.2. The Sitnikov case:

(after Huberman et al.,1980 1) ).

(c) Starage Rings

One of the systems in which chaos 1is posing difficult design
problems is that of storage rings, in which charged particles move in
electromagnetic fields({Helleman, 1980)) . If only one of the beams is
travelling along a circular path, the transverse oscillations of the

protons are described by the equation

2
d 2
.——Y-z—Qy’

a¢?
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where y is the normal deviation, ¢ is the amgular coordinate and Q is a
characteristic frequency. The collisions with a second beam are
practically instantaneous and can be modelled by

2
Y e . 0%y +BF(y) J 6 ¢~ 2mn). a»
da¢ -4

Although very few of the protons collide, all suffer a strong nonlinear
force BF(y). The system (1.3) cannot be solved analitycally and its
numerical treatment is very difficult, since in a typical experiment, the
protons undergo more revolutions than those of by the Barth around the
Sun in all its history. However, we can obtain a simpler discrete equation
in the following way. Let us define

Yy y(2nt) , i 3¢ (ane ),

C = cos 27TQ, C = sin 27TQ .,

Equation (1.3) can then be written as
Yeg1 =C Y Y (8/Q) p,

Ppyq =°SQvg + Cp + BRIy, ),

~and after eliminating p one has

Yogq ¥ Ypq4 = 2€ y, + (BS/Q) Fly,), (1.4)

an algebraic equation easy to solve. In Figure 1.3 we can see a typical
diagran (yH_1 ,yt> for F(y) = 2(l-exp(-y2/2))/y, although many functions
give rise to similar properties. The lower part is an enlargement around
one of the hyperbolic points. All the chaotic points which "fill* a bidi-
mensional regibn belong to the same orbit.

(d) The Rayleigh-Bénard Convectiocm

This interesting phenomenon ({Berge’ et al., 1984}, (Schuster, 1984})
was discovered by Bénard in 1900 and explained by Lord Rayleigh in
1916. If a fluid layer is placed between two horizontal plates such
that the lower one is hotter, the difference of the temperature being,

there is a competition between



Figuwa 1.3. Phase space of Eq.1.4 Figure 1.4. The Rayleigh-Bénard
(aftex; Eminhizer, 1980 )% convection.

the tendency of the hotter fluid to.rise and that of the cold one to fall
(Figure 1.4). The viscosity.is opposed to these tendencies and is able to
impede any motion up to a certain threshold of AT. But, above this critical
value, the equilibrlul; becomes unstable and the fluid -begins to move with
the classic convection !;olls. The characteristic time for the equalization
of the temperature by thermal diﬁuéion is ¢ =d2/DT, where d is the
distance between the plates and Dr the thermal diffusivity. On the other
hand, the characteristic time of the equalization through motion is
Tmn = N /(psgadaT), where n 1is the viscosity, Po the density, g the
acceleration of the gravity and o the dilatation coefficient. In order
that a permanent effect be produced, the ratio of these quantities, called

the Rayleigh number, must be greater than a certain critical value Ry
that is,

p,90d?
Ra = t,/1, = AT > Ro, 1.5)
nDy
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The Rayleigh number is the control parameter. In order to modify it, the
experimenter changes the difference AT. Above R, the convection rolls
appear and above another critical value the regularity disappears and

the motion does not follow any recognizable pattern.

(e) The Belousov-Zhabotinsky Reactiom

In 1958, the Russian chemist Belousaov observed an oscillating
chemical reaction, made apparent by an alternation of the color of the
solution, which changed between yellow and colorless (In 1921 Bray, in
California, bad made similar observations, but nobody paid attention to
his work). Some years later, Zhabotinsky studied the phenomenon in detail
in his doctoral thesis. In the so called Belousov-Zhabotineky reaction,an
organic molecule (malonic acid) is oxidized by bromate ions, the
process belng catalyzed by a redox systen((‘,eh*/c«?ﬁ)u'm) (see also
;Schuster, 1981‘}), The basic reactants are

Cez(SOQ)a. NaBrQ,, CH, (COOH)Z, H,80, »

to which a color indicator is added. The reaction is very complex, with
as many as 18 elementary steps, and depends on several control
parameters such as the temperature and the mean residence time in the open
reactor. The variables of the associated dynamical system are the
concentrations of the reactants. It is usual to observe that of the ion
Ce},‘, this being specially easy because of its strong absorption of 1light
of 340nm. For some values of the control parameter, the concentration of
Cel <« and that of the other chemicals) osciliates periodically. But
abaove a certain critical value the behaviour is chaotic.

(f} The Bernouilll Sbift
The Bernoulli shiftl% (see also {Arnold and Avez},1978) 1s a ais-

crete dynamical system in (0,1), defined as
=0{(x ) =2x (mod 1), 1.6y
n n

It is convenient to use the binary representation of x:
-4

_ ~k
xo = 0.a1a2a3.. an.. X akz
1
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since it is them clear that the action of o consists in erasing the
first digit

0(0.a1a2... )} = O.azaBad... .

That of oK is therefore the elimination of the first k digits. This
strongly chaotic system has the following properties:

(1) It has sensitive dependence on the initial conditions, because the
errors double at each step. If the distance between two “seeds” x, and X3
is smaller than 1/2R, they have the first n digits in common, but they
differ in the (n+l). Consequently the sequences generated by them will be
completely different after the iteration number (n+1). If we only know
the first n digits of x, we know nothing about o+l
(11) Let us consider the coarse-grained evolution based in the partition
of the phase space into the two intervals L=(0M), R=(%,1). To every
trajectory xpn we associate a sequence of L's and R's, depending on where
xp is. It is certainly isomorphic to the binary representation of x,. For
instance to 0.1001011... there corresponds RLLRLRR... If we identify R
with heads and L with tails, x, is equivalent to tossing a coin an infinite

number of times. In fact, as none of the two sequences, digits of x_ or

o
heads or tails, follow in general a regular pattern, if we are given a
sequence of R's and L's, we cannot tell how it has been obtained.

(11) The system is ergodic. This means that the trajectory generated by
any seed, with the exception of a set of measure zera ( the rationals),
passes arbitrarily close to any number x in {0,1). To be specific, if we
require that it passes closer than e=2-R, it is necessary that there is
an integer m, such that the first n digits of X, coincides with those of
x. But this is precisely the case, since the. decimal representation of any

irrational containe any finite sequence of digits an infinite number of
times. '

{dv) In order to predict the sequence x, for all k it is necessary to
know the initial condition X, with an infinite number of digits, that is
with zero error.This is precisely the reason for the unpredictability of a
chaotic system: the determiniem of the equation of motion does not allow
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an effective prediction of the trajectory if the initial conditions are
not known with infinite precision; but this 1s impossible in data
obtained by measurement or calculation, as this would imply an infinite

amount of information.

It is easy to understand the mechanism which is responsible for the
chaos. It consists in the two effects which appear schematically repre-
sented in figure 1.6:

(a) Because of the product by 2, the intervals are ®stretched®, the errors
are amplified and the neighbouring points are separated.

(b) Because only the decimal part is taken, the stretched total interval
is "folded® and the previously separated points are intermingled.

This combination of stretching and folding is similar to the shuffling of
a deck of cards. In fact, in this case, the deck is first expanded, so
that the cards are slightly separated, and is later folded on itself. For
this reason this mechanism, which is present 1n general chaotic systems,
could be called shuffling effect. Curiously enough, many natural
deternministic systems behave as cards which are shuffled.

———————————

~

~
stretching T~

folding

’ .

0 X 1
Figure 1.5. The Bernouilli shift g(x). Figure 1.6. Stretching and folding

in the Bernouilli shift.



