INDUSTRIAL HEALTH

Jack E. Peterson

INDUSTRIAL HEALTH

002758

Jack E. Peterson

Marquette University

Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

PETERSON, JACK E (date) Industrial health.

Includes bibliographical references and index.

1. Industrial hygiene.
2. Occupational diseases.
3. Industrial toxicology.
1. Title. [DNLM: 1. Industrial medicine.
2. Occupational diseases.
3. Poisoning. WA400 P485i]
RC967.P47
613.6'2
76-17650
ISBN 0-13-459552-1

© 1977 by Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced in any form or by any means without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

PREFACE

Books, including this one, tend to give the reader an impression that the world is replete with immutable facts and unchanging ideas and that there is only one best way of doing almost anything. The world does change, however, and many immutable facts change right along with it despite their representation by the unchanging written word. This book does not contain a list of threshold limit values (TLV's) for chemicals or for any physical agents. Threshold limits published by the American Conference of Governmental Industrial Hygienists (ACGIH) are updated annually, but this book is not. Few things are so out of date as last year's TLV list. Similarly, there is a positive dearth of analogous data for radioactive materials, air and water pollutants, or legislated standards. Instead, in this text, underlying principles are emphasized, assigning much of their application to current publications such as TLV's, Hygienic Guides, ANSI standards, and scientific journals, all well designed to further the constant battle against information obsolescence.

This book began as the outline of a survey course taught mainly to senior and graduate civil engineering students and ended as an expanded version of that outline fleshed by the ideas of many people. It is, in systematic form, a collection of useful fundamentals and principles behind man's attempt to evaluate and control hazards that abound in his environment. Because they are most immediate, occupational hazards are stressed, ranging from those of chemical toxins to those of various energy forms. Many of the materials and energies are found also in the home, farm, or garden.

The reader is assumed to have some familiarity with science and scientific methodology but no particular background beyond that is necessary. A review of organic chemical nomenclature important in the field is presented in Appendix A, and a glossary of terms mainly from medicine and

physiology appears in Appendix B.

Many people contributed to this book but only a few can be thanked. Jim Mellender devised the algorithms and wrote the programs that allowed me to computerize my file of abstracts and then to search it with extreme rapidity. Both computers used for this purpose belong to the Medical College of Wisconsin; much of the abstract file was developed during my employment with that institution.

Marquette University personnel and especially those in the College of Engineering were particularly encouraging throughout all phases of manuscript preparation. A special debt is owed to my students, who helped shape the lecture outlines with questions and comments; to Dean Ray Kipp and Civil Engineering Department chairmen Al Zanoni, and, later, Bill Murphy, who helped ease the burdens of my academic life to allow more time for writing.

At home my wife and two sons not only helped by taking over many of my husbandly and fatherly chores but participated actively in the book production process. Writing could not have been done without their aid.

Much of the industrial hygiene I know can be traced back to The Dow Chemical Company and especially to the man who was responsible for my choice of this above all other fields, Harold Hoyle. Both he and Warren Cook, my friend and thesis advisor at the University of Michigan, taught me well so that the mistakes herein are mine, not theirs.

J. E. P.

CONTENTS

era processa o la Papa de Asilia.

Preface xv

Entry and Toxic Actions of Che	mical Substances
Routes of Entry	* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ingestion Skin Absorption Inhalation	n na Maria Printe Printe prikas Printe di
Mode of Action Action at the Site of Contact Absorption into Blood Action on Blood	to a service of services and a service of services and the services of
Absorption into Tissue Site of Action	taling to entry to
Toxic Action	

Laboratory Determination of Toxicity 10 Industrial Toxicology 12 Dose-Response Statistical Expressions 12 . of Data 16 Interpretation of Data Selection of Subjects 17 17 Experiments with Animals 18 Experiments with Man 119 Experimental Methods Range-Finding. 19 20 Controls Growth Rate 20 21 Acute Toxicity Tests 24 Subacute Testing 25 Chronic Testing 27 References Gases 29 29 **Asphyxiants** Toxic Effects of the 29 30 Hypoxia 32 Transport Interference 38 Apnea Enzyme Inhibition 39 **Irritants** 40 Upper Respiratory Tract 40 Lower Respiratory Tract 41 42 Whole Respiratory Tract Asphyxiating Irritants 44 References 44

Metals and Metalloi	ds 47
Dietary Essentials	48
Organometallic Compounds	48
Volatile Hydrides	49
Sensitizers	50
Volatile Carbonyls	51
Metal Fume Fever	. 51
The Burton Line	·· 5 2
Teratogenic Effects	52
Mental Effects	
Fuming Halides	5 ₃
Antagonists	54
Carcinogens	5 5
Bad Odors	56
Miscellaneous Oddities	56
Summary	56
References	57
	, , , , , , , , , , , , , , , , , , ,
	which is a second
E	
5	
Pneumoconioses	61 (4 E. 1)
Fibrogenic Materials	61
Free Crystalline Silica	62
Asbestos	65
Nonfibrogenic Materials	67
Inorganic Materials	67
Organic Materials	71
D -f	

Organic Solvents 75

Aliphatic and Alicyclic	er Kongariya Gorafia Nobel Brook (1981)	
Hydrocarbons	76	
Aromatic Hydrocarbons	77	
Halogenated Aliphatic and Aromatic Hydrocarbons	<i>79</i>	
General Rules	80	
Specific Compounds	82	
	22 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	
Oxygenated Hydrocarbons	83 ,	
Aliphatic Alcohols		
Cyclic and Aromatic Alcohols	84	
Glycols	85	
Ethers	86	
Glycol Ethers	86°	
Aldehydes	87	
Ketones	88	
Acids and Acid Anydrides	89	
Esters	. 90	
Nitrogen-Containing Compounds	91	
Mononitro Aliphatic		
Hydrocarbons	91	
Polynitro Aliphatics	92	
Halo-Nitro Compounds Aliphatic Nitrates	92 92	
Aromatic Nitro Compounds	92 93	
Amines	93 94	
Polyamines	94 95	
	96 96	
Amides	96	
Pyridine and Derivatives	21.0 1 (16.1 1) 11 (16.1 1) 97	
Hydrazines	955	
	Mr. V. J	
Miscellaneous Compounds	99 1974 - Johnson Limber	
Carbon Disulfide	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Triaryl Phosphates	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lactones	100,	
References	100	

O

7,

Monomers and Polymers	105	
Addition Polymerization		106
Hydrocarbons		106
Halogenated Hydrocarbons		107
Esters		109
Nitriles		110
Catalysts		110
Condensation Polymerization		111
Phenol-Formaldehydes	• .	112
Aminoplasts and Polyamides		112
Epoxy Resins		114
Polyurethanes Polyesters		115 117
•		• "
Polymers		118
References		118
8 :		•
Pesticides 121		•
Resistance		122
Bioconcentration		123
Rodenticides		124
Red Squill		
Sodium Fluoroacetate		124 124
Thallium Salts		124
ANTU		125
Norbormide		125
Warfarin		126
Fumigants		126
Insecticides		126
Chlorinated Hydrocarbons		127
Cholinesterase Inhibitors		129
Herbicides		134
Fungicides		136
Dithiocarbamates		137
Phthalimids		138
Quinones		138
Miscellaneous Fungicides		138
References		130

Sensitization and Dermatitis	141	
Hypersensitization		141
Mechanisms of Allergic Reaction		142
Mediator Actions		144
Increased and Reduced Sensitivity		145
Antihistamines		145
Cross-Sensitization		146
Factors Influencing Allergic Disease		146
Common Allergic Disorders Diagnostic Criteria		148
Allergy Tests		149
Allergic Potential		150 151
Primary Skin Irritation		151 153
Protective Measures		153
References		154
10		
Carcinogenesis 157		
Definition of Cancer		158
Environmental Carcinogenesis		159
Factors Influencing		
the Development of Cancer		<i>159</i>
Carcinogens		161
Chemical Carcinogens	i .	161
Physical Carcinogens		168
Biological Carcine gens		169
Modes of Entry and Sites of Action	* *	170
Animal Testing		170
References		171
	• :	
11	4, 4	
Abnormal Pressure 175		
Normal Pressure		175
Basic Data		175
Gas Laws		176

Respiratory Gas Concentrations	178
Low Pressures	180
Acute Exposure	180
Acclimatization	182
Chronic Exposure	182
High Pressures	184
Acute Exposure	184
Chronic Exposure	188
References	188
12	
	<u>i</u> seki sali seki si
Noise 19)
Physics of Sound	192
Frequency	192
Velocity	193
Quantity	194
Noise Sources	196
Measurement of Noise	<i>198</i>
Sound Pressure Level Meters	` 199
Noise Spectrum Analyzers	202
Impact Analyzers	2 03
Noise Dosimeters	204
Effects of Noise	204
Hearing	204
Noise-Induced Hearing Loss	207
Miscellaneous Effects	
Related to Hearing	210
Extraauditory Effects of Noise	
	210
Audiometry	211
Noise Control	213
Engineering Control	214
Work Practice Control	216
Personal Protection	216
References	218

Biothermal Stress 221	
Temperature Regulation in Man	222
The Hypothalamus	222
Control Actions	223
Acclimatization	22.1
Consequences of Control Failure	226
Thermal Comfort	227
Biothermal Stress	229
The Energy Balance	230
Indices of Heat Stress	230
Evaluating the Thermal Environment	<i>2</i> .35
Control of Biothermal Stress	236
Cold Stress	236
Heat Stress	237
References	237
14	
Nonionizing Radiation 241	
Units of Measurement	243
Ultraviolet	244
Effects on Man	244
Measurement	246
Sources	247
Control	247
Visible	248
Effects on Man	248
Seeing	249
Measurement	250
Infrared	25 0
Effects on Man	250
Sources	251
Measurement Control	251
	252
Microwaves	252
Effects on Man	252
Sources Measurement	253 253
Control	200 25.1

Lasers	254
Effects on Man	255
Sources	256
Measurement	256
Control	256
References	256

lonizing Radiation 259 259 Fundamentals of Health Physics Properties of Radiation 263 Penetrating Ability 263 264 Absorption of Matter Radiation Energies 264 **Ionizing Ability** 265 Bremsstrahlung 266 Tissue Damage 267 Ionizing Radiation Units 267 Effects of Ionizing Radiation 269 Mechanisms of Injury 269 Radiosensitivity 271 272 Acute Somatic Injury Chronic Somatic Injury 273 Genetic Effects 274 Measurement 275 Photographic Emulsions 275 Gas Ionization Instruments 276 **Scintillation Counters** 278 Thermoluminescent Devices 279 Miscellaneous Methods and Devices 280 Control 280 Uniqueness 280 **Biological Sampling** 282 Leak Testing 283 Miscellaneous Control Methods 283 References 284

Hazard Evaluation and Control	287	. *
Hazard Evaluation	71	287
Dose Determination Probable Response Determination		288 292
Hazard Control	•	296
Theory Exposure Reduction Methods		296 298
References		301

Appendices

Á

Review of Organic Chemical Nomenclature 305

B

Glossary 317

.

Index 335

ENTRY AND TOXIC ACTIONS OF CHEMICAL SUBSTANCES

Toxicity is a property of matter. It is a biological property in much the same way that mass is a physical property. It is an extrinsic, as opposed to intrinsic, property because toxicity is a function of the amount of material. (Mass is an extrinsic physical property.) Toxicity is the ability of a material to injure a living organism by other than mechanical means. The toxicity of a material is not altered by the way it is handled, by its temperature, or by its physical state, but the toxic hazard posed by the material may be greatly influenced by these and by many other external factors. The toxic hazard of a material is the likelihood of injury and an evaluation of hazard must consider, in addition to toxicity, physical and chemical properties, physical state, method of handling, and other factors that influence the probability of contact with significant amounts of the material.

Of course not all hazards are toxic hazards. Hazards arise from various forms of energy and from mechanical sources as well as from toxicity. Mainly on the basis of historical precedent, mechanical hazards such as falling, tripping, caught in or between, and fire/explosion are considered to

be the province of people who call themselves safety engineers, safety professionals, or safety specialists, and that field is generally called *safety*. All other hazards, and in particular those associated with materials, pressures, and energies encountered by man in his occupations, fall into the field called *industrial hygiene*.

Routes of Entry

While the inherent toxicity of a material is not dependent on how that material gets into the body unless the material is altered chemically by entry, the route of entry is normally specified in expressions of absolute or relative toxicity. This is so because the efficiency of absorption of materials by the body varies with the route of entry, and injection with a hypodermic needle is the only way of being certain that 100% of a dose has been absorbed. Even though drug abuse may be an important industrial problem, injection of industrial chemicals is not. Instead, attention must be focused on entry by the routes of ingestion, skin absorption, and inhalation.

Ingestion

Workmen rarely eat or drink the materials they handle, even in a candy factory, and therefore ingestion is an important route of entry only in cases where the acute (short term or single dose) or chronic (long term or repeated dose) toxicity by this route is very high. For materials with high oral toxicities, the small amounts that may be transferred to the mouth from the hands on a sandwich or a cigarette may be enough to be cause for concern. This is so with most radioisotopes, some of the metals, and many of the organophosphate insecticides. In general, if the material has an acute oral LD₅₀ (lethal dose for 50% of the animals fed) of 1.0 mg/kg or lower, precautions against oral contact should be taken if ingestion is a possible route of entry.

Note that the word *poison* has been avoided. Poison has legal connotations as it is defined in several laws that need not concern us here. Toxicologists and environmental health engineers usually avoid using the word *poison* except in circumstances required by law (labels, for instance) or to mean simply too much.

Skin Absorption

Rather than being an absolute barrier, man's skin acts as a selective filter. Some materials such as water-soluble salts are almost absolutely excluded but others such as phenol, hydrogen cyanide, and aniline are readily absorbed through the intact skin. Intact skin is more of a barrier than is abraded or lacerated skin, indicating that the skin does offer at least some resistance to penetration of all materials. Even though some materials