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Preface

The aim of this volume, whose authors are drawn from several disciplines, is to
give an up-to-date insight and a deeper understanding of the phenomena related to
transport through biomembranes. This collection of papers was originally presented
at.the Second Course of the School on “Fundamental Aspects of Membrane Phe-
nomena,” coordinated by the Italian Group of Membrane Science and Technology.

The topics are organized in a hierarchical fashion, beginning with the transport
properties of model systems and moving into topics of increasing complexxty such
as reconstitution of membrane transport functions.

The rapid expansion of this area can be attributed to a number of techmcal
advances both in forming well-characterized model systems (such as planar black
membranes and liposomes) and in isolating and purifying membrane compounds.
The chapters in this volume combine the biophysically oriented approach, intended
to underline the physical basis of membrane processes, with the biochemically:
oriented approach, stressing the crucial role played in reconstitution experiments
by isolation and purification of membrane proteins, enzymes, and receptors.

Renzo Antolini
Alessandra Gliozzi
Alfredo Gorio
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Kinetic Properties of Ion Carriers, Channels,~
' and Pumps

P. Lauger

Department of Biology, University of Konstanz, D-7750 Konstanz, )
Federal Republic of Germany

Permeation of ions through cellular membranes in-
volves special mechanisms different from simple diffu-
sion through the lipid bilayer. In the discussion of
‘possible passive transport pathways, two alternatives
are usually considered: carrier and channel mechanisms.
A carrier (in its simplest form) may be defined as a
transport system with a binding side that is exposed
alternately to the left and to the right side (but not
to both sides simultaneously). A channel, on the other
hand, consists of one or several binding sites arranged
in a transmembrane sequence and is accessible from both
sides at the same time.

Clear-cut examples of carrier and channel mechanisms
in ion transport have been obtained from the study of
certain small or medium-sized peptides and depsipepti-
des. Cyclodepsipeptides, such as valinomycin, have been
shown to act by a translatory carrier mechanism which
involves a movement of the whole carrier molecule with
respect to the lipid matrix of the membrane (1). A
well-characterized ion channel is the channel formed by
the linear pentadecapeptide, gramicidin A (2). In these
cases the distinction between a channel which is more
or less fixed within the membrane and a carrier moving
within -the lipid matrix is unambiguous. The discrimi~
nation between carrier and channel mechanisms becomes
less obvious, however, in the case of large membrane
proteins spanning the lipid bilayer, which are thought
to be responsible for ion transport across the cell
membrane. Such a protein is unlikely to move as a
whole within the membrane. It still can act as carrier
(according to the definition given above), however, if
a conformational change within the protein switches the
binding site from a left-exposed to a right-exposed
state. A channel, on the other hand, does not necessa-
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rily have a fikxed, time-independent structure. Proteins
may assume many conformational substates and move from
one state to the other. Aecoxdingly, in a channel con-
formational transitibns may occur between states di-
ffering in the height of the energy barriers that re-
strict the movement of the. ion. It will be shown be-
low that such a channel with multiple conformational
states may approach the kinetic behavior of a carrier.
Channel and carrier models should therefore not be re-
garded as mutually.exclusive possibibities, but rather
as limiting cases of a more general mechanism.

KINETIC ANALYSIS OF TRANSLATORY ION CARRIERS

Incorporation of certain macrocyclic antibiotics,
such as valinomycin, enniatin B, and the macrotetro-
lides into artificial lipid bilayer membranes result in
a strong increase of potassium permeability of the mem- .
brane (3). Ion transport mediated by carriers of the
valinomycin type occyrs in four distinct StepS(Flp,l)'
Association of ion M and carrier S 1n the interface,
(ii) translocation of the complex ms? (iii) disso-
ciation of MS*, (iv) back transport of free carriers S.
The kinetics of the carrier may be analyzed by study-
ing the electrical conductance of planar bilayer mem-
branes. In particular, electrical relaxation techniques

S 5

e % % @ :
Fig.1.Transport

of ion M* media-
latory carrier
kR k, 8%

ted by a trans-
2 s

MS* MS

’rlIJ¢
(7] v
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CARRIERS, CHANNELS, AND PUMPS 3

such as the voltage-jump (9) or charge-pulse method
(2) may be used to evaluate the individual rate con-
stants. As a specific example, we consider the results
obtained for valinomycin/Rb+ in a monoolein/n-decane
membrane (25°C, 1 M RbC1)(2):
kL =3x10°M”
R 5 -
kD:2X10 s
5
kMS~3x12 s
kszéxlo s

I -1
s

1
-1

s

1

At one-molar concentration of the transported ion
(C,=1 M), the rate constants of association (Crk ),
dissociation (k, ) and translocation of he'lqaée car-

K . ‘5\‘?‘1
rier (k,.) are approximately equal (2-3x s'). The
rate-determining step in this sysgem is the back trans-
port of the free carrier (k. >4x10's 1). kM§!3k105s'1
is the frequency by which the ion-carrier complgx cros-
ses the central barrier; the reciprocal value 1/k .
Jusec is the average time required for translocation.
This time may be compared with the diffusion time 1=
d2/2D of a spherical particle of the size of the
carrier across the same distance (membrane thickness
‘d~5 nm) in water (diffusion coefficient D™3x1076 cm
s~1), which is about 0.04 usec.

THE GRAMICIDIN CHANNEL AS A MODEL CHANNEL

The finding that gramicidin A, a hydrophobic peptide
with known primary structure, forms alkali-ion per-
meable channels in lipid bilayer membranes (5) opened
up the possibility of studying ion permeation through
channels in a simple model system. Gramicidin A is a
linear pentadecapeptide with the secquence HCO-L-Val-
Gly-LAla-D-Leu-L-Ala-D-Val-L-Val-D-Val-L-Trp-DéLeu-L-
Trp-D-Leu-L-Trp-D-Leu-L-Trp-NHCH,CHpOH. Evidence that
gramicidin A forms channels (and does not act as a mo-
bile carrier) has been obtained in experiments in which
very small amounts of the peptide were added to a plan-
ar bilayer membrane (5) . Under this condition the mem-
brane current under a constant applied voltage fluc-—
tates in a step-lipe manner. The size of the single
conductance step is about 90pS in 1! M Cs*+, corres-
ponding to a transfer of 6x10/Cs* ions per sec. A
structural model of the gramicidin channel has been
proposed by Urry (11). According to this model which

is now supported by many experimental findings, the
channel consists of a helical dimer that is formed by
head-to-head (formyl end to formyl end) association of
two gramicidin monomers and is stabilized by intra-
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Fig.2. Structure of
the n6(L,D)—he1ix

of gramicidin A 11
The hole along the
helix axis has a
diameter of 0.4 nm
«and is lined with
oxygen atoms of the
peptide carbonyls.
Hydrophobic aming-=
acid residues loca-
ted at the periphery
of the helix are not
shown. The transmem-
brane channel con-
sists of two helices
joined at the formyl
end.

and inter-molecular hydrogen bondg (Fig.2). The cen-
tral hole along the axis of the (L,D)~helix has a
diameter of about 0.4 nm and is lined with oxygen
atoms of the peptide carbonyls, whereas the hydropho-
bic amino-~acid residues lie on the exterior surface
of the helix. The total length of the dimer is about
2.5~-3.0 nm, the lower limit of the hydrophobic thick-
ness of thelipid bilayer.

CHANNELS WITH MULTIPLE CONFORMATIONAL STATES:
A UNIFYING CONCEPT

A channel may be represented by a series of "bin-
ding sites" that are separated by energy barriers. The
binding sites are the minima in the potential energy
profile which result from interactions of the ion with
one or several groups of the channel. Ion transport
through the channel may be described as a series of
thermally activated processes in which the ion moves
from a binding site across an energy barrier to an
adjacent site. In this treatment the energy levels of
wells and barriers are usually considered to be fixed,
i.e., independent of time and not influenced by the
movement of the ion. This description, which corres-
ponds to an essentially static picture of protein
structure, represents a useful approximation in cer-
tain cases. Recent findings on the dynamics of protein
-molecules, however, suggest the use of a more general
concept of barrier structure.

A protein molecule in thermal equilibrium may exist
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in a large number of conformational states and may
rapidly move from one state to the other (4). Evidehnce
for fluctuations of protein structure comes from X-ray
diffraction studies (4), NMR experiments (12) and from
the kinetic analysis of ligand rebinding to myoplobin
after flash photolysis (1). These and other studies
have shown that internal motions in proteins occur in
the time range from picoseconds to seconds. This
suggests that the energy profile of a channel is sub-
jected to fluctuations over a wide spectrum of times.
0f particular interest is the possibility that tramnsi-
tions between conformational states of the channel pro-
tein may be coupled to the movement of the ion within
the channel (8). Such a coupling may result, for in-
stance, from electrostatic interactions between ion

and ligand system. When an ion jumps into a binding
site, the strong coulombic field around the ion tends
to polarize the neighbourhood by reorienting dipolar
groups of the protein. This reorientation is likely to
shift the energy level of the binding site and the
height of adjacent barriers. If the rate of conforma-
tional change induced by the ion is comparable to or
smaller than the jump rate, the ion may leave the
binding site before the protein structure has relaxed
to the polarized state. Likewise, after the ion has
left a binding site, a certain time is required to for
the channel to return to the original conformation, an
the next ion may find the structure still in a partly
polarized state. Changing the ion concentration in the
aqueous phase (and thus the average occupancy of the
channel) may shift the distribution of conformational
states of the channel and affect its permeability. A
general treatment of multistate channels is, of course,
rather complicated. In the following we discuss the
simple case of a two-state channel with a single
binding-site (Fig.3), which already exhibits some of
the basic properties of channels with variable barrier
structure (8). It is assumed that the channel molecule
may exist in four distinct substates:

v

Cr conformation r, empty

C: conformation r, occupied

Cs conformation s, empty

C: conformation s, occupied
The rate constants for transitions between these sub-
states are indicated in Fig. 4. Transitions between
empty and occupied states may occur by exchange of an

ion between the binding site and the left or right
aqueous phase., Thus (Fig.3):



