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General Chair's Preface

It has been my pleasure to serve as General Chairman of the ACM SIGSOFT/
SIGPLAN Software Engineering Symposium on High-Level Debugging, which
was held at the Asilomar Conference Center in Pacific Grove, California, on
March 21-23, 1983. The symposium was one in a continuing series of
Software Engineering Symposia sponsored by ACM.

The symposium was limited to approximately 90 attendees; roughly twice that
number indicated an interest in attending. Attendees were chosen on the
basis of position statements submitted to the program committee. The
attendees came from Canada, China, France, Germany, ltaly, Scandinavia, the
United Kingdom, and all regions of the United States.

Publication of these proceedings substantially increases the literature in
debugging. To my knowledge, this is the first symposium on debugging
since the Courant Symposium in 1970.* Many new issues and many new
approaches to old issues are reported here. :

. These proceedings contain session summaries and papers submitted by the
participants. They constitute the formal record of the symposium. The
“informal -discussion, the live and videotaped demonstrations of debugging
tools, and the spirit of collegiality among the participants were important
aspects of the symposium that are not recorded here.. ,

Thanks are due the program committee, the session recorders, and the
participants who all contributed to the success of the symposium. Special
thanks to Mark Scott Johnson who served as program chairman. He also
handled local arrangements. Finally, a word of appreciation to the staff of
Asilomar. They provided a pleasant, professional setting for the symposium.

*Debugging Techniques in Large Systems. Edited by Randall Rustin;
Prentice-Hall, 1971,

Richard E. Fairley
General’ C‘hai rman
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Program Chair's Preface

The Program Committee mat on November 8, 1982,
to organize the Symposium and ‘to select
participants, One hundred twenty submissions
(representing one hundred: sixty people) were
received, numbering over eleven hundred pages of
material. To maintain the workshop character of
the symposium, only half 6f these could be
accommodated.

The submissions fell into three groups: position
statements (60%), working papers (30%), and
research  abstracts  (10%). The proceedings
containsg the revised papers and abstracts of all
invited participants; the position statements are
not included. Versions of several of the papers
have been submitted for publication in referred
journals.

The Symposium was organized into seven sessions
based on the submissions: Debugging Methodology,
Knowledge-Based Debugging, Requirements/Design
Debugging, Integrated Environments, Distributed
Debugging, Implementation Issues, -and Demon-
strations. The proceadings are likawise divided
into these seven categories; each begins with a
summary of the session as it unfolded at Asilomar,
followed by the papers and abstracts that most
relate to the session. It .should be  noted,
however, that few papers were formally presented
at the Symposium. Most sessions were organized
as panels, short papers, or directed group
discussions.

My thanks to the members of the Program
Committes, who survived admirably the .grueling
one-day long committee meeting. Despite the
difficulty of running a meeting of so many talentéd
(and opinionated) people, much was accomplished
in relatively short time. | trust it was their
expert preparation, and not my tyrannical
leadership, that made this possible. )

Seven graduate students graciously consented to
act as session recorders during the Symposium.
Their thoro and professional efforts are greatly
appreciated:

¢ Peter C. Bates, University of Massachusetts
* Wayne C. Gramlich, MIT .

* Thomas Gross, Stanford University

e Michael S. Kenniston, Stanford University

* Insup Lee, University of Wisconsin, Madison
* Mark A. Linton, University of California

* Janice Cynthia Weber, University of Toronto

Bert Raphael, Director of Hewlett-Packard's
Computer Science Laboratory, supported the
Symposium thru both my time and subsidy of the
Symposium's expenses. My thanks to him and to
Barbara Alles, who assisted me with the veritable
deluge of correspondence that emanated from my
computer. -

| approached Dick Fairley with the idea for the
Symposium over two years ago. He enthusias-
tically accepted the idea. We worked over the
phone and thru the mail for a year and a half
before meeting in person, however. It has been a
pleasure and an honor to work with Dick..

Mark Scott Johnson
Program Committee Chairman
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Debugging Methodology

(S‘esion Summary)
Wayne C. Gramlich

Panel Participants:

R. Stockton Gaines (moderator)

Dan Moore

Elaine Weyuker

Elliot Soloway

Richard Hamlet

Jonathan Goldblatt

Two sessions were held on the general topic of debugging
methodology. Both were moderated by R. Stockton Gaines.
During the first session five speakers presented short talks on
their workshop submissions. Each talk was followed by a
brief question and answer period. The format of the second
session was that of an open discussion. The talks presented
in the first session have been briefly summarized. The
remaining notes of these two sessions have been arranged
topically rather than chronologically.

, 1. Talk Summaries

The first debugging methodology session was opened with
the following list of questions:

1. What is hard about debugging?

2. What are programmers’ thought processes during
debugging?

3. How can bugs be classified?.

4, How do people approach debugging?

5. Why are debugging facilities used as little as they
are?

6. Why has so little happened in the field of
debugging in the last ten years?

7. How does high-level debugging differ from low-
level debugging?
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

© 1983 ACM 0-89791-111-3/83/007/0001 $00.75

8. How does the prosrammmg environment (batch,
interactive, real-time, concufrent, dmuibmed.
etc...) affect debugging?.
Neither quesuon “dx “not- ‘question ' eight received much
discussion during the two sessions.

Dan Moore from Bell Laboratories addressed the questions
of "why is debugging hard?" and “what are programmers
thought processes during debugging?” His observation was
that debugging appeared to require both analytic and
intuitive thought modes. See his workshop submission for
more details) Recent psycological evidence suggests that
analytical thought occurs in one hemisphere of the brain
while intitive thought occurs in the other. It was Moore's
hypothesis that debugging is hard because it is difficult to

transfer the locus of thought from one hemisphere to the.

other.

Elaine Weyuker from New York University addressed the
question of "How do people approaéh debugging?" She
collected data on the kinds of bugs made by a group of three
professional programmers working for an industrial firm.
She pointed out that there is very little of this kind of
information in existence. For this particular software project
no debugger was used despite the fact that a debugger
existed. 90% of the bugs were found by desk checks and test
runs, while the remaining bugs were found using program
dumps.

Ellio; Soloway from Yale University addressed the question
of "How can bugs be classified?” He examined the bugs
made by novice programmers and concluded that bugs could

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.



not be classified without knowing what the programmer had -

in mind.

Richard Hamlet from the University of Maryland addressed

the question of "How does high-level debugging differ from

low-level debugging?™  He contended that low-level
debugging provided the user with a great deal of data but
relied on the user to extract useful information from the date.
Program dumps and DDT (an interactive memory
examination program) were examples of low-level
debugging. He suggested that high-level debugging would
have the computer extract the useful information about the
bug for the user. In particular, the user would deal with the
debugger in the same abstractions in which the program ‘was
written, - e

Jonathan Goldblatt from Intermetrics discussed the
experience gained. from. debugging the software for the
NASA space shuttle. The space shuttle requires high

reliability software ‘because a catastrophic software .failure

could potentially cause the loss of a billion dollar piece of
hardware. The approach taken was to use system simulation
o extensively test the shuttle software.

2. Myjor Issues

The major isues discussed in the two debugging

methodology sessions are listed in the following paragraphs.

| How can bugs be classified?

Early in the workshop people classified bugs into the two

‘broad categories of easy bugs and hard bugs. An edsy bug is
relatively easy to find and a hard bug is relatively difficult to
find. Eline Weyuker's talk presented -information that
showed most bugs were found- and cofrected in
approximately an hour, There is another set of bugs that

takes on the order of a day to find and correct. Someone in

the audience suggested that an 80720 rule might apply o
program bug classification. That is, 80% of the bugs are easy
bugs and 20% of the bugs are hard bugs. However, since

hard bugs take longer to ﬁngi and correct, the programmer -

can spend more time trying to find and correct hard bugs

rather than easy bugs. Several panticipants suggested that a
frequent cause for a hard bug is that the programmeér
‘develops & mind set a8 to how the program is supposed
work when in fact it works differently.

Is bug classification useful?

Someone claimed that bug classification is not uscful because
the bug classifications seem not 10 be a useful aid in
developing debuggers.. Someone clse pointed out that simply
classifying bugs is not enough. It is also necessary to know
how frcquerit each bug class occurs before bug classification .
can be used to decide what features to insert into a debugger.

What is hard about debugying?

While there was general agreement that debugging is hard,
there is very little consensus as to why it is hard. Here is a list

: ofspggmcd reasons:

« Debugging is hard because it requires repeated
switches between intuitive and analytic thought
modes.

- Debugging is hard because programmers develop
a mind set that their program should work one
way when in fact it does not.

-Debugging is hard because the available
_debugging tools are not adequate.

" -Dcbugging is hard because the program
semantics change as the user finds and corrects
bugs. This makes it difficult for the user to

~ develop a consistent model of program behavior.

What is high-level vs. low-level debugging?

While the workshop was on high-leve! debugging, it was very
difficult 10 come up with an agreed upon definition for high-
level debugging. There seemed to be a consensus that low-
Jevel debugging consisted of things like program dumps and
DDT.  Someone belatedly suggested that- high-level
debugging i anything that is not low-level debugging.
Someone eclse suggested that high-level debugging is
debugging in the problem domain whereas low-jevel



debugging is debugging in the solution domain (Le.
programming language.) Yet someonc else suggested that
high-level debugging consists of tools added 10 a fow-level
debugger 1o make debugging easier. Somcone suggested that
an important distinction is whether the debugging occurred
in the same programming Janguage or below the
programming language level,

Why are debugging facllities used as little as they are?

No one really contested that debugging facilities were used
very little. While most people in the audience regularly used
debuggers, the audience did' not represent a typical selection
of programmers. Some suggesied reasons for why debugging
facilities are not used are: .
- In many situations the debugger simply does not
exist. Alternatively, sometimes the debygger and

the program to be debugged cannot both be put
into the same address space.

- Debuggers frequently display the wrong kind of
information (for example, displaying a string as
hexadecimal bytes.)

- Debuggers are frequently designed Jong after the
language system has been designed. This results
in a debugger that is not imegmed into the

system.

- The debugger frequently does not use the same .
syntax as the programming language. This makes
the debugger more difficult to leam to use.

-Sometimes using the debugger modifics the -
program behavior. This is the Heiscnberg
Uncenainty Principle -as applied to debugging
(an instance of such a bug was called a
*Heisenbug™ by one participant) .

Ts &t possible to make a portable debugger?

There was a mixed reaction to whether debuggers can be
made portable in the same sense that languages are made
portable. Some people claimed success in porting a
debugger and other people did not succeed. One person
explained that their group was unsuccessful in porting a
debugger to some machines because the various machines

did not support needed features. Breakpoints were used as
an example. Someone made the comment that the only way
that their group succeeded in porting a debugger was to
design the debugger and the language implementation at the
same time. Someone else commented that porting debuggers
would probably get harder as the debuggers became more
sophisticated in capabilities.

What unusual tools were useful for debugging?

Someone in the audience asked the question of whether
anyone used some tools for debugging that were not
explicitly designed for the task. Someone displayed the
‘binary image of the program directly onto a bit-map screen.
Someone else found that a program history nianagement
system was useful. In one case a program that translated a
program into English was also useful. There were several
comments that graphically displaying the state of the
program in real-time was a useful feature,



DEBUGGING "LEVEL": STEP-WISE DEBUGGING

Dick Hamlet

Department of Computer Science
University of Maryland*
College Park, MD 207N2

Abstrect

Debugging techniques originated with low-level programming languages, where the memory dump and interaotive
word-by-word examination of wmemory wers the primary tools. "High-level®™ debugging is often no more than
low-level techniques adapted to high-level languages. Ffor example, to examine the execution of an opera-
tional specification one state at a time dy setting dreakpoints, is superior to doing the same thing to a
machine-language program, but only because the language level has improved; the debugging remains primitive.
This paper attempts a radical definition of debugging level, and illustrates it with a technique for order-
ing the execution of concurrenz processes in a way that follows their design structure.

Division of a program into a collection of ccoperating processes is a means of controlling the complexity of
sach process. However, in execution the program-development structure is ignored, with the result that the
advantages ‘of decomposition are lost. What the designer has divided and conquered, the debugger sees as an
overwhelming monolith. The technique proposed here causes the focus of execution to follow the design

structure, in a way that does not require detailed user direction.

1. Debugging Level

The two major low-level debugging techniques are
memory dumps and interactive examination of memory.
Both require dreakpointing, the ability to tem-
porarily halt an executing program, to be effec~
tive. Almost every system has a "snapshot” dump

[lcili TK’ today many also have some variant of DDT
4], ese techniques can be adapted to high-level

languages in an obvious way: dumps can be format-
ted according to storage declarations and can show
execution history in source terms [9]; interactive
debuggers can employ type information to display
the source program’s view; both can set bdbreakpoints
based on complex conditions, perhaps using expres-
sions written in the source language itself. How-
ever, the dedbugging paradigm of halting just before
soms difficulty occurs and examining everything to
see vhat might be wrong, is the same at any
language level, and can only be called low-level
debugging.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
pubhuuon and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
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In attempting a definition of debugging "level®
it is easiest to characterize the existing low lev-
el:

a) The person involved must understand the de-
tails of execution sequence, in ordor to properly
set breakpoints.

b) The information interchange batween: person
and computer system is extensive; this is obvious
in the case of a dump, but interactive sequences of
long duration are no improvement.

o) Computer processing of the information
presented to the person ia miniml, little more
than formatting.

Two improvements can occur when the language level
is raised: -

1) Breakpoints can be set "associatively,” to
halt the program when a condition expressed in tom
of the program state occurs rather than when a ‘par-
ticular control point is reached. This is a par- -
tial anawer to point a) above. i

*Part of this work was performed while on leave at
Department of Computer Science, University of Mel-
dbourne, Parkvills, Victoria 3052, Australia. It
was partially supported by AFOSR grant ﬂ9620-80-
Cc-0004.



11) Debugging commands may be given in source
terms, with the full power of the programming
language available. Por example, to trace down a
linked list, the debugger might use a program frag-
ment that moves from link to link just as the
source program would, printing nodes as it goes.
This bears on point e).

In the repair of a given bug, the debugging
level is determined by the information interchange
between person and program. It rises when less in-
formation is exchanged. This definition is impre-
cise, but can serve as a guideline since it concen-
trates on point b) above.

Consider the case of a concurrent-process sys-
tem. It is low-level debugging to "just let it
run” and study the history of execution interleav--
ing and communication, because far too much infor-
mation passes from program to user. It is also
low-level for a person to interactively control the
scheduling and communication, because too much ine-
formation passes in the other direction. In the
remainder of this paper a high-level approach is
described, in which each process is isolated fron
the others, and a user implicitly controls execu-
tion by describing the process structure, without
knowledge of execution details.

2. Decomposition of Programs

"Divide and conquer® is acknowledged to be the best
strategy for combating program complexity. 1In its
least structured form, this philosophy ‘involves di-
viding a program into "modules,” each so small that
i1t can dbe understoocd easily. Unfortunately, a bad
division can be counterproductive in that the data
interfaces between modules are so droad, and the
control connections so chaotic, that understanding
of the whole does not come from understanding of
the parts. The method of structuring decomposition
considered here is cooperation between autonomous
processes. (However, the technique may also be ap-
Plied to step-wise refinement [1].)

Cooperating sequential processes can be viewed
as complete programs that communicate by passing.
messages [2).. A graph in which nodes represent
processes (programs) and the arcs are potential
message-interchange connections descrides the sya-~
tem structure. The system complexity is more like-
ly to reside in the nodes than in the communication
connections. In the extreme case represented by
UNIX pipes [3] the graph is a chain, and the nodes
may be sophisticated programs. The idea of process
decomposition is that each process can be under-
stood alone, and the behavior of the whole is obvi-
ous given that of the parts. Ideally, understand-
ing an N-module system requires only dealing with a
fixed number K (K << N) of modules at a time.

During system developmsnt, each module can be
assigned to a separate designer or programmer, who
needs only information about immediately connected
modules. Units are difficult to debug in isolation
because intermodule interfaces are less precise .
than actual designs or code for the other modules.
The most common schemes are to wait for all modules
to be completed, and test them in a bottom-up

fashion so that all communications are supplied as
they will actually be in the complete system, or to
test top-down using stubs that do not behave much
like the missing modules, but merely (say) announce
their presence. This paper considers how to do a
better job of top-down débugging. The essencs of
the idea is to use modules in isolation, in stages:
the information that should be supplied by missing
modules is given at random in stage 0, creating
outpucs that are used as inputs in stage 1, and so
on until the process converges (if it does) to a
useful test.

Step-wise debugging requires the support of a
bookkeeping tool, because the volume of data and
its proper labeling is difficult for a person to
handle. 1In some cases it is useful for a human
user to monitor details of the debugging process;
more Often it is desirable that all detail be hid-
den, for which machine assistance is essential.
When a user supplies only the design structure and
allows a madhine system to control execution, then
the technique is truly high-level, since no execu-
tion detail is supplied by the use, and none con-
veyed to him. ‘

3. Step-wise Debugging of Cooperating Saquential
Processes . : L :

A module-communication graph does not wholy capture
the structure of processes in so-called resl-time
systems. In such systems each process is cydlie
{perhaps implemented using a never-ending loop)
with its body devoted to interacting with other’
processes and performing calculations based on
those interactions. The "output” of a process is
the messages it sends to other processes, ard its
"input" is received from them. The external world
can be thought of as another process interacting
with the computer system. (This view is probably
due to Fitzwater {5] and has been used as the basis
of a specification language [6].)

An important feature of cooperation among
processes is synchronization of communication,
wvhich can be incorporated in message passing by al-
lowing a process to test for a waiting incoming
message. The details of message-passing primitives
are not oritical to the method presented here, but
choosing particular primitives makes the descrip-
tion better. Therefore, assume that commuynication
occurs as follows: (1) processes communicate by
name; (2) process output is immediate, and is not
queued if not sccepted before another output; (3)
process input waits for the corresponding outputs
(4) a process may test for input waiting., To com-
bine separately executed processes so that their
messages could actually be exchanged during execu-
tion, it is sufficient to associate a time stamp
with each message and input-waiting test. \

Step-wise debugging is defined in a series of
stages, as follows. Given a system input, at stage
0, each process body is executed once in isolation,
with incoming messages randomly generated (but see
below), and decisions about waiting input treated
as two~valued random choices. Each message and
choice is stamped with the execution time of the
process at which it ocours. ‘It may happen that



some stage-0 outputs can serve as inputs later in
stage 0 (and similarly, later stages may sometimes
use the cutputs from earlier stages) if the time
stamps permit. If process 3 sends a message to
process R stamped ¢t , it can be used by R at tinme
u only 1if all of R’s input-waiting tests on S be-
fore t and before u have failed, and all those
after t and before u have succeeded, Should
such an output be used, as input it is time stamped
the greater of ¢t and u , reflecting the faot
that R had to weit for it. Should t be greater
than u , execution time for R is alsc updsted.to
t . At the end of stage 0, two lists are availabdle
by module: ‘outputs produced, and inputs consumed.
Most items in these lists are the consequences of
random choices, and so must be marked as dublous.

At stage 1, the stage-0 input-consumed lists
are considered for each process. Each entry is re-
quired as output from another process P. P is then
executed (using stage-0 and earlier stage-1 values.
where available, otherwise generating inputs at
random) until the needed value is produced. (This
may require more than one repetition of P’s body,
and indesd the Yiecessary wessage may never be
forthcoming, as discussed below.) When a needed
message ooours, the calculation in which it is to
be used is repested, including the necessary revi-
sions in time atamps discussed above. As examina-
tion of the stage-0 input-oonsumed list procseds, &
new stage~! list of input consumed and output pro-
-duced is amassed, in whioh some of the dubiocus
warks from stage 0 do not ooour. Continuing in
this wey, at stage ¥ there is an input-consumed
148t from stage N-1, to be sought using the most
recent messages where poasidble, then substituted
into the most recent earlier computations. This
mey force yet earlier substitutions, and creates
the two lists for stage N. :

Step-wise dedbugging may terminate even though
execution of a set of cooperating processes does
"mot. That is, & stage may be reached at which all
the dudbious marks have been eliminated, and no new
messages ars naeded. - This means that a particular
sequence of interactions has been discovered that
is time~consistent, and so represents a poseidle
aoctual exscution of the symtem. Raoh process dody.
has been executed an integral numdber of times, and
no inputs are missing. Continuing to execute any

process say begin a new (possidbly different) cycle. ‘

The execution sequence that results ﬁ'ﬂ.l'
given system input depends on the order in which

processes receive ocontrol. This scheduling is imw

pliett in step-wise dedugging, determined by o
user-supplied process struoture. If the process
struoture is a tree, then the modules sre con-
aidered at each atage in breadth-first order.
_Thoaa near the root of the tres dominate the execu-
tion sequenae in the sense that other processes
sgive tham what thay vant.® It ip this implioit
scheduling eontrol that eliminates most of the de-
talled information interohange betwsen progras and
user, and makes the method high-level acoording to
the definition in Seotion 1.

¥hen a process P should produce a message at
stage N, it oan fail, either bscause the message
oannot de produced, or dbeasuse P has not itself
been given the proper messsges to yleld the needed

result. In the former case a bug has been found in
P; this may be true in the latter oase as well, bdut
the difficulty may be deferred by copying the entry
that caused the trouble to the input-consumed list
at stage N, so that it will be tried again at stage
Nel,

To illustrate step-wise debugging, each process
may be written as a Pascal-like program, named by a
"process header."” Communication is via the pro-
cedures:

send(link, message)

with the meaning that "message" is transmitted to
process "1ink", to be overrun if not received be-
fore another send, and the caller immediately
resumes control; and,

receive(link, variable)

meaning that the ocaller P waits until process
"1ink" has directed a message to P, whose contents
are availadle in “variabdble®,

Synehronization uses the Boolean function
ready(11nk) ‘

which returns TRUE if process "1ink" has sent the
oaller a message that may now be raceived without
waiting, otherwise FALSE. These constructions may
be used with a process named EXT, not provided ex-
plioitly, representing the system environment.
Thus receive(BXT, ...) is an external input, and
send(BXT, ...) an output.

The three-process systes {A, B, C} below 1llusw
trates the effect of structuring on step-wise de-
bugging. The processes attempt to distribdbute work
among themselves. Constants and varisdbles are of a
suitable "message" type that is irrelevant to the
example. : .

prooess A

oconst free, busy;

var x

begin {wait for work sent dy process C}
while true do ’

begin
send(C, free); ,
receive(C, x);
send(C, busy);
{do the work indicated dy x)}
ond
ond.
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process Bj
oonst free, busy;
var xj ’
begin {if process C has sent work, do its
otherwise get work from EXT}
vhile true do

begin
send(C, free);
if ready(C) then
receive(C, x)3
else
receive(BXT, x)3
send(C, bdusy); :
- {do the work indicated by x}
“l
process Cj
eonst free;
var xj ’
begin (parcel out work to A and § when
they can acaept it, or do it hers}
while true do .
begin
receive(EXT, x)}
receive(A, state);
Af statesfres then
send(A, Xx) .
else

bagin .
receive(8, atate)}
if statezfree thes
send(B, x)
olse
{do the work indicated by x}
ond . .
end
end.

Thia systes is pkcubxy intended to have C at
the top level, with A and B asubardinate. Using

. that structure, and with sn input represented by x -

y 3 , wvhere X takes two units of time to pracess,
y takes 4, and 3 takes 9, messured in statement
count units, at stage O we have

Tine o Process
¢ 7 A B
1 EXT -> % fres > € free ~> €
2 A => busy . €27 *pready C
3 : busy <> ¢ - KT -2 Y
g B =) free (do ?2) dbusy => C
s , o (do y)
6 X «>8

whers the notation "P -> a" in s process column .
means that P sends sessage = to this process;
"y > P" peans that this process sends = to P.
At stage 0, only the sotions at time 1 are acou-
rate; the others are ggn@nud by random cholces.
At stage 1 ve havet .

Iime - Process

g N )

1 BT > % free -> C free «> C
e A =) free ' “ready C
3 m-)'
] X «> A C->x dusy => C
s T > 2 dusy => C (do ¥}

§ A => busy (do x)

8 B -> busy

10: {do 3)

where now all acticns are 30lid except the last
three entries under C. At stage 2 these turn out
to be correat, and the procedure is complete. This
display is similar to one that oould have been ob-
tained by just letting the systes run, or by oone
trolling the scheduling expliaitly (7]. The
difference is that because process C is treated
first, it dominates the execution pattern. Prom the
viewpoint of high-level dedugging the more iapor-
tant point is that such a tadle would not be print-
od at all, But merely summarized (here parhaps ast

Input A i | "4
xys x€6 765 010
o showing explioft output only). Thus the safore

. mation interchange is drasticslly reducted.

If we restructure the u-i systen 0 that B s
‘dominant, at stage Ot o

. Process
8 e )
free => ¢ T >y free =XC
resdy € A => ey Cwr?
G2 T Mn?°
busy «> ¢ B> free - (do 1)
(G0 1) ,
xe> W

only the time-1 sotions sure. At atage 1

:_'awoﬂomau»—ﬁg g owmwn- g

. Prooess
| ] B c A
free . C . T c’,, "” =2
“paady C. A <> free. ' D
BXT -2 % :
M 3 N - Yy =2 A C = Yy
(g0 x) V . buey => €.
s (do ¥)
free »> C
ready C
C =27
sy -> C
(do 1)

Waloh 1s sure through tise 7. The summary reaylt
st R ’ : . )
Ioput 'O T

:. ys y@6. x¢5
241t

rather different than when the probable design



structhre was followed. Again note the limited ex-
change of information to obtain the new case: the
user has only to specify that B dominates C and A.

¥, Computer Support

Even the trivial examples of section 3 show that
step-wise debugging cannot be attempted without au-
tomatic bookkeeping. A support implementation is
straightforward. The techniques of self-contained
interpreter, preprocessor, or run-time library with
compiler modiffcation are all applicable. For a
conventional programming language (and for most
program design languages) the run-time library ap-
proach can be easily added to a conventional debug-
ging system with procedure~call tracing. Since
each message is transmitted by a procedure call,
and since the trace routine gets control at each
call, it can be modified to generate values and
record the required lists. Instead of allowing the
program itself to execute, a phony main program is
added that invokes the instrumented procedure code,
according to the method’s stages. Essentially the
same techniques have been used for an automatic
testing system [8), and in an concurrent-process
debugging system using formatted dumps [9].

5. Summary

A method of high-level dedbugging has been described
which structures the usual chaotic process of test-

ing a large piece of software. The resulting test -

run emphasizes processes at the top level of the
system’s structural description. The method sug-
gests a straightforward computer tool to support
the extensive bookkeeping required.
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